www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktionsbeweis
Induktionsbeweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 13:25 Fr 06.11.2009
Autor: fiktiv

Aufgabe
[mm] a^{n} [/mm] < [mm] b^{n}, \forall [/mm] n [mm] \in \IN [/mm] und [mm] \forall [/mm] a,b [mm] \in \IR [/mm] mit 0 [mm] \le [/mm] a < b

Auf diese Ungleichung soll die vollständige Induktion angewandt werden.
Das Problem an der Sache ist, dass die Ungleichung ja im Prinzip völlig klar und einleuchtend ist, aber wie lässt sich so etwas mit zwei variablen Basen überzeugend beweisen?

Nachdem ich das formale erfüllt habe, darf ich b wie folgt definieren um dann zu einem verifizierten Beweis zu gelangen?:
b = a + 1
Im Rahmen des Beweises muss ich ja quasi von der einen "auf" die andere Seite kommen..


        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 Fr 06.11.2009
Autor: fred97


> [mm]a^{n}[/mm] < [mm]b^{n}, \forall[/mm] n [mm]\in \IN[/mm] und [mm]\forall[/mm] a,b [mm]\in \IR[/mm]
> mit 0 [mm]\le[/mm] a < b
>  Auf diese Ungleichung soll die vollständige Induktion
> angewandt werden.
>  Das Problem an der Sache ist, dass die Ungleichung ja im
> Prinzip völlig klar und einleuchtend ist, aber wie lässt
> sich so etwas mit zwei variablen Basen überzeugend
> beweisen?
>  
> Nachdem ich das formale erfüllt habe, darf ich b wie folgt
> definieren um dann zu einem verifizierten Beweis zu
> gelangen?:
>  b = a + 1


Das kannst Du natürlich nicht machen. b=a+1 ist nur ein Spezialfall !


>  Im Rahmen des Beweises muss ich ja quasi von der einen
> "auf" die andere Seite kommen..


Mach es wie gewohnt:

Ind.-Anfang: der Fall n=1 ist klar.

Ind. -Vor.:  blabla blubber

Ind. -Schluß : [mm] a^{n+1}= aa^n [/mm] < [mm] ab^n [/mm]  (nach I.V.)
                                                
                       [mm]
                       = [mm] b^{n+1} [/mm]

FRED
  

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]