www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktionsbeweis
Induktionsbeweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:44 Do 05.11.2009
Autor: aly19

Aufgabe
Zeigen sie, dass für alle k,n [mm] \in \IN [/mm] gilt:
[mm] \vektor{n \\ k} \bruch{1}{n^k} \le \bruch{1}{k!} [/mm]  gilt.

Naja ich wollte das halt mit induktion machen. also
Induktionsanfang:
n=1
[mm] \vektor{1\\k} \bruch{1}{1} [/mm] = [mm] \bruch{1}{k!}*\bruch{1}{(1-k)!} \le \bruch{1}{k!} [/mm]
(mit n=0 geht das ja irgendwie nicht oder?)
induktionsvoraussetzung:
sei [mm] \vektor{n \\ k} \bruch{1}{n^k} \le \bruch{1}{k!} [/mm]  für alle k,n [mm] \in \IN [/mm]
induktionsschritt
ja da hab ich jetzt probleme:
[mm] \vektor{n+1 \\ k} \bruch{1}{(n+1)^k} [/mm]
= [mm] \bruch{(n+1)!}{(n+1-k)!*k!*(n+1)^k} [/mm]
wie könnte ich jetzt weiter machen und die induktionsvoraussetzung anwenden?
vielen dank schonmal  


        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Do 05.11.2009
Autor: fred97

Das geht ohne Induktion: benutze die Def. von [mm] \vektor{n \\ k} [/mm] und rechne nach:


  $ [mm] \vektor{n \\ k} \bruch{1}{n^k} \l= \bruch{1}{k!} (1-\bruch{1}{n})*(1-\bruch{2}{n})* [/mm] ...* [mm] (1-\bruch{k-1}{n})$ [/mm]


Das Produkt  [mm] $(1-\bruch{1}{n})*(1-\bruch{2}{n})* [/mm] ...* [mm] (1-\bruch{k-1}{n})$ [/mm] ist [mm] \le [/mm] 1, also ....

FRED





Bezug
                
Bezug
Induktionsbeweis: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:13 Do 05.11.2009
Autor: aly19

hey danke für die antwort.
ich sehe leider noch nicht wie du von
[mm] \bruch{n!}{(n-k)!*k!*n^k} [/mm] auf [mm] \bruch{1}{k!} (1-\bruch{1}{n})\cdot{}(1-\bruch{2}{n})\cdot{} ...\cdot{} (1-\bruch{k-1}{n}) [/mm] $ kommst, kannst du das irgendwie deutlich machen. wäre supr.

Bezug
                        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Do 05.11.2009
Autor: fred97

$ [mm] \bruch{n!}{(n-k)!} [/mm] $ auschreiben und kürzen

FRED

Bezug
                                
Bezug
Induktionsbeweis: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:50 Do 05.11.2009
Autor: aly19

also bei mir wird das dann so:
[mm] \bruch{n!}{(n-k)!}=\bruch{n*(n-1)*(n-1)*(n-3)...}{(n-k)*(n-k-1)*(n-k-2)*(n-k-3)...}=\bruch{(1-1/n)*(1-2/n)*(1-3/n)...}{(1-k/n)(1-(k-1)/n)(1-(k-2)/n)...} [/mm]
weiter komme ich leider nicht.
wie geht das jetzt mit dem kürze?

Bezug
                                        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Do 05.11.2009
Autor: fred97

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

$\bruch{1}{k!}* \bruch{n!}{(n-k)!}*\bruch{1}{n^k}= \bruch{1}{k!}*\bruch{n(n-1)(n-2)* ...*2*1}{(n-k)(n-k-1)* ...*2*1}*\bruch{1}{n^k}=$

$ \bruch{1}{k!}*\bruch{n(n-1)(n-2)* ...*(n-(k-1))}{n*n* ...*n}}= \bruch{1}{k!}(1-\bruch{1}{n})*(1-\bruch{2}{n})* ...*(1-\bruch{k-1}{n})$

FRED

Bezug
                                                
Bezug
Induktionsbeweis: Fertig
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:17 Do 05.11.2009
Autor: aly19

super dankeeeeee

Bezug
                                                        
Bezug
Induktionsbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Do 05.11.2009
Autor: fred97


> super dankeeeeee


abeeer bitteeeeeeeeeeeee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]