www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktionsbeweis
Induktionsbeweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis: Summen- und Produktzeichen
Status: (Frage) beantwortet Status 
Datum: 18:14 Mi 10.12.2008
Autor: annika94

Aufgabe
Beweisen Sie die folgenden Rechengesetze für das Summen- bzw. Produktzeichen durch vollständige Indukion nach n beginnend mit n = m:
[mm] \produkt_{i=m}^{n}x_{i+k}=\produkt_{i=m+k}^{n+k}x_{j}; [/mm]
[mm] a*\summe_{i=m}^{n}x_{i}=\summe_{i=m}^{n}a*x_{i} [/mm]

Hallo,
ich habe die obige Aufgabe zu lösen und mir fehlt einfach der Ansatz, wie ich an die Sache ran gehen kann.
Mir sind beide Gleichungen völlig klar, aber ich weiß nicht, wie ich sie beweisen kann.
Ich würde mich sehr freuen, wenn mir jemand einen Tipp geben könnte, wie ich anfangen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Mi 10.12.2008
Autor: reverend

Na, es steht doch schon alles in der Aufgabenstellung. Beweise mit vollständiger Induktion. Nimm n=m als Induktionsanfang.

Beispiel 2. Aufgabe:

>  [mm]a*\summe_{i=m}^{n}x_{i}=\summe_{i=m}^{n}a*x_{i}[/mm]

Induktionsanfang:
[mm] a*\summe_{i=m}^{m}x_{i}=a*x_m=\summe_{i=m}^{m}a*x_{i} [/mm]

Stimmt schonmal ;-)

Dann Induktionsschritt. Geht so los:
[mm] a*\summe_{i=m}^{n+1}x_{i}=a*\left(x_{n+1}+\summe_{i=m}^{n}x_{i}\right)=a*x_{n+1}+a*\summe_{i=m}^{n}x_{i}=... [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]