www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktionsbeweis
Induktionsbeweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Sa 02.02.2019
Autor: sae0693

Aufgabe
Sei n [mm] \in \IN. [/mm] Für alle n [mm] \ge [/mm] 2 gilt 4n+1 > 2n+2.

Ist folgender Weg korrekt?

Induktionsanfang: n = 2
4*2 > 2*2+2
9 > 6

Induktionsschritt:
Wir nehmen an, dass 4n+1 > 2n+2 gilt, so müssen wir beweisen, dass auch 4(n+1)+1 > 2(n+1)+2 richtig ist.


4(n+1)+1 > 2(n+1)+2
4n+5 > 2n+4
4n+1 > 2n

4n + 1 wird immer größer sein als 2n, da n immer größer oder gleich 2 ist. Ist das so ausreichend?


        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 Sa 02.02.2019
Autor: chrisno


> Sei n [mm]\in \IN.[/mm] Für alle n [mm]\ge[/mm] 2 gilt 4n+1 > 2n+2.
>  Ist folgender Weg korrekt?
>
> Induktionsanfang: n = 2
>  4*2 > 2*2+2

4*2+1 > ...

>  9 > 6

Was zu zeigen war, also ok.


>  
> Induktionsschritt:
>  Wir nehmen an, dass 4n+1 > 2n+2 gilt, so müssen wir

> beweisen, dass auch 4(n+1)+1 > 2(n+1)+2 richtig ist.
>  
>
> 4(n+1)+1 > 2(n+1)+2
>  4n+5 > 2n+4

>  4n+1 > 2n

Hier muss Du anders herum vorgehen:

>  Wir nehmen an, dass 4n+1 > 2n+2 gilt

Sei also
4n+1 > 2n+2
Dann folgt
4n+3 > 2n+4
Damit folgt erst recht
4n+5 > 2n+4
Daraus folgt
4(n+1)+1 > 2(n+1)+2
Was zu zeigen war.

> so müssen wir beweisen, dass auch 4(n+1)+1 > 2(n+1)+2 richtig ist.

>  
> 4n + 1 wird immer größer sein als 2n, da n immer größer
> oder gleich 2 ist.

????

Es steht zwar nicht in der Aufgabe, aber was ist mit n=1?

Bezug
                
Bezug
Induktionsbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Sa 02.02.2019
Autor: sae0693


> Hier muss Du anders herum vorgehen:
>  >  Wir nehmen an, dass 4n+1 > 2n+2 gilt

>  Sei also
>  4n+1 > 2n+2

>  Dann folgt
> 4n+3 > 2n+4
>  Damit folgt erst recht
>  4n+5 > 2n+4

>  Daraus folgt
>  4(n+1)+1 > 2(n+1)+2

>  Was zu zeigen war.

Hier kann ich nicht ganz folgen. Warum folgt aus  4n+3 > 2n+4 dann  4n+5 > 2n+4?  Die linke Seite verändert sich, ohne, dass sich die rechte verändert.


>  > so müssen wir beweisen, dass auch 4(n+1)+1 > 2(n+1)+2

> richtig ist.
>  
> >  

> > 4n + 1 wird immer größer sein als 2n, da n immer größer
> > oder gleich 2 ist.
> ????
>  
> Es steht zwar nicht in der Aufgabe, aber was ist mit n=1?

Naja, n ist größer oder gleich 2. Steht so in der Angabe, so brauche ich die eins ja nicht berücksichtigen. Und vier mal eine zahl wird immer größer sein als zweimal dieselbe Zahl, solange die Zahl positiv ist.

Bezug
                        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Sa 02.02.2019
Autor: angela.h.b.


> > Hier muss Du anders herum vorgehen:
> > > Wir nehmen an, dass 4n+1 > 2n+2 gilt
> > Sei also
> > 4n+1 > 2n+2
> > Dann folgt
> > 4n+3 > 2n+4
> > Damit folgt erst recht
> > 4n+5 > 2n+4
> > Daraus folgt
> > 4(n+1)+1 > 2(n+1)+2
> > Was zu zeigen war.

>

> Hier kann ich nicht ganz folgen. Warum folgt aus 4n+3 >
> 2n+4 dann 4n+5 > 2n+4? Die linke Seite verändert sich,
> ohne, dass sich die rechte verändert.

Hallo,

es wird die linke Seite, die größere Seite,  vergrößert.

Schau, wenn 7>4, dann ist doch auch 7+3>4 richtig.

LG Angela
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]