www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktionbeweis Ungleichung
Induktionbeweis Ungleichung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionbeweis Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 So 05.11.2006
Autor: blascowitz

Aufgabe
Beweisen Sie mittels vollständiger Induktion folgende Ungleichung für alle reelen Zahlen: [mm] \produkt_{i=1}^{n}(1+a_{i})>=1+\summe_{i=1}^{n}a_{i} [/mm] für [mm] a_{i}>=-1 [/mm] und [mm] (a_{i}*a_{j}) [/mm] >0 und n=1,2,....

Das ist die Aufgabe bei der ich nicht weiterkomme:
Der Induktionsanfang ist trivial:
n=1:
[mm] \produkt_{i=1}^{1}(1+a_{i}) [/mm] = [mm] (1+a_{1}) [/mm]
[mm] 1+\summe_{i=1}^{1}a_{i} [/mm] = [mm] (1+a_{1}). [/mm]
Damit ist Induktionsvoraussetzung erfüllt.
Nun der Induktionsschritt:
n-->n+1:
Behauptung: [mm] \produkt_{i=1}^{n+1}(1+a_{i})>=1+\summe_{i=1}^{n+1}a_{i} [/mm]
[mm] \produkt_{i=1}^{n+1}(1+a_{i})= \produkt_{i=1}^{n}(1+a_{i}) *(1+a_{i}). [/mm]
Nach Induktionsvoraussetzung gilt:
[mm] \produkt_{i=1}^{n+1}(1+a_{i})>=1+\summe_{i=1}^{n}a_{i}*(1+a_{i}) [/mm]
Nach Distributivgesetz gilt:
[mm] 1+a_{i}+\summe_{i=1}^{n}a_{i}+(a_{i}*\summe_{i=1}^{n}a_{i}) [/mm]
Und genau da hört es auf, weil ich nicht weiß, wie man die Summe nun weiter in Richtung Induktionsbehauptung zusammenfassen soll. Über HIlfe wäre ich dankbar. Danke im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktionbeweis Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 So 05.11.2006
Autor: kampfsocke

Achtunh, ich hatte einen Fehler, ist jetzt korigiert. Das letzte Glied vom Produkt ist natürlich [mm] (1+a_{n+1}) [/mm] nicht [mm] (1+a_{i+1}) [/mm] denn man hat ja für i=n+1 eingesetzt

Nein, es muss heißen: [mm] \produkt_{i=1}^{n+1}(1+a_{i})= \produkt_{i=1}^{n}(1+a_{i}) *(1+a_{n+1}) [/mm]

Kannst du so weitermachen?
//Sara

Bezug
                
Bezug
Induktionbeweis Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:31 So 05.11.2006
Autor: blascowitz

Ich denke so komme ich weiter. Ich danke für die Hilfe. Noch ein schönes Wochenende.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]