www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Induktion mit 2 unbekannten
Induktion mit 2 unbekannten < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion mit 2 unbekannten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Mo 10.11.2008
Autor: Jana555555

Aufgabe
zeigen sie, dass für alle r,s [mm] \varepsilon \IN [/mm] mit 2 [mm] \le [/mm] s [mm] \le [/mm] r gilt:

[mm] \vektor{r\\ s} [/mm] * [mm] (1/r)^s \le [/mm] (1/ (2^(s-1))

Hallo!

Habe bei dieser Aufgabe meinen Induktionanfang gemacht, der auch ohne Probleme gegangen ist.
Leider weiß ich nun leider nicht, wie ich meinen IS weiter machen muss.
Muss ich r -> r+1 und s-> s+1 machen oder nur r oder s.
Wie kann ich das den erkennen??

Vielen dank schon mal.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Induktion mit 2 unbekannten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Mo 10.11.2008
Autor: pelzig


> Habe bei dieser Aufgabe meinen Induktionanfang gemacht, der
> auch ohne Probleme gegangen ist.
> Leider weiß ich nun leider nicht, wie ich meinen IS weiter
> machen muss.

Wenn du im Induktionsanfang den Fall $r=1$ betrachtet hast, dann musst du jetzt im IS [mm] $r\Rightarrow [/mm] r+1$ zeigen, ansonsten das ganze mit $s$.

Man kann auch mehrfache Induktion machen. Hat man z.B. für [mm] $n,m\in\IN$ [/mm] eine Aussage $A(m,n)$ und soll zeigen, dass diese für alle [mm] $(m,n)\in\IN^2$ [/mm] erfüllt ist, dann könnte man das so machen:

IA1: Beh.: für alle [mm] $n\in\IN$ [/mm] gilt A(1,n)
   IA2: Beh.: Es gilt $A(1,1)$
   IS2: Beh.: [mm] $A(1,n)\Rightarrow [/mm] A(1,n+1)$
IS1: Beh: gilt $A(m,n)$ für alle [mm] $n\in\IN$, [/mm] dann auch $A(m+1,n)$ für alle [mm] $n\in\IN$ [/mm]
   IA3: Beh.: [mm] $A(m,1)\Rightarrow [/mm] A(m+1,1)$
   IS3: Beh.: [mm] $A(m,n)\Rightarrow [/mm] A(m+1,n+1)$

In diesem Beispiel macht man also Induktion über $m$ und dann im Induktionsanfang und Induktionsschritt jeweils eine Induktion über $n$ (man kann natürlich auch nur über eins von beiden Induktion über $n$ machen). Man muss nur genau aufpassen was man an welcher Stelle schon voraussetzen darf und was nicht.

Hoffe das hat dich nicht zu viel verwirrt, aber ich empfehle dir dich damit auseinander zu setzen, denn wenn du das kannst hast du Induktion wirklich verstanden!

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]