www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktion ggT
Induktion ggT < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion ggT: Idee
Status: (Frage) beantwortet Status 
Datum: 15:10 Mi 19.12.2012
Autor: Coup

Aufgabe
Beweise durch vollständige (endliche) Induktion :
$ggT(an,bn) = ggT(a,b) $ n [mm] \ge [/mm] 1

Hallo,
Ich habe natürlich n=1 innerhalb des Induktionsanfangs angenommen.
Daraus folgt die Gleichheit $ ggT(a*1,b*1) = ggT(a,b)$

Im Induktionsschritt überprüfe ich nun mit $n = n+1$ ob die Gleichheit gilt.
Es folgt :
$ggT(a*n+1,b*n+1) =ggT(a,b)$

Jetzt muss ich doch irgendwie die Vorraussetzung $ ggT(a,b) $ in meinen Induktionsschritt einarbeiten. Kann ich den ggT(a,b) dann einmultiplizieren sodass
$ ggT(a*n+1,b*n+1) * ggT (a,b) $ wird ?

Hier stecke ich irgendwie fest


lg
Micha

        
Bezug
Induktion ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Mi 19.12.2012
Autor: fred97


> Beweise durch vollständige (endliche) Induktion :
>  [mm]ggT(an,bn) = ggT(a,b)[/mm] n [mm]\ge[/mm] 1
>  Hallo,
>  Ich habe natürlich n=1 innerhalb des Induktionsanfangs
> angenommen.
>  Daraus folgt die Gleichheit [mm]ggT(a*1,b*1) = ggT(a,b)[/mm]
>  
> Im Induktionsschritt überprüfe ich nun mit [mm]n = n+1[/mm] ob die
> Gleichheit gilt.
>  Es folgt :
>  [mm]ggT(a*n+1,b*n+1) =ggT(a,b)[/mm]

Ja, das ist zu zeigen, unter der Vor. [mm]ggT(a*n,b*n) =ggT(a,b)[/mm]

>  
> Jetzt muss ich doch irgendwie die Vorraussetzung [mm]ggT(a,b)[/mm]
> in meinen Induktionsschritt einarbeiten. Kann ich den
> ggT(a,b) dann einmultiplizieren sodass
>  [mm]ggT(a*n+1,b*n+1) * ggT (a,b)[/mm] wird ?

Nein, male ggt grün an.


>  
> Hier stecke ich irgendwie fest

irgendetwas über denn ggt, was auf dieser Seite

http://de.wikipedia.org/wiki/Größter_gemeinsamer_Teiler

wirst Du verwenden müssen.

FRED

>  
>
> lg
>  Micha


Bezug
                
Bezug
Induktion ggT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Mi 19.12.2012
Autor: Coup

Das Distributivgesetz ?
$ggT(ma,mb) = |m| *ggT(a,b)$


Micha

Bezug
                        
Bezug
Induktion ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Mi 19.12.2012
Autor: fred97


> Das Distributivgesetz ?
>  [mm]ggT(ma,mb) = |m| *ggT(a,b)[/mm]

Schau mal hier:

https://matheraum.de/read?i=937429

FRED

>  
>
> Micha


Bezug
        
Bezug
Induktion ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Mi 19.12.2012
Autor: fred97


> Beweise durch vollständige (endliche) Induktion :
>  [mm]ggT(an,bn) = ggT(a,b)[/mm] n [mm]\ge[/mm] 1

Mir fällt gerade auf, dass ich etwas beim ersten Antworten überlesen habe. Die Aufgabe lautet doch so:

[mm]ggT(an,bn) = n*ggT(a,b)[/mm] für n [mm]\ge[/mm] 1

FRED


>  Hallo,
>  Ich habe natürlich n=1 innerhalb des Induktionsanfangs
> angenommen.
>  Daraus folgt die Gleichheit [mm]ggT(a*1,b*1) = ggT(a,b)[/mm]
>  
> Im Induktionsschritt überprüfe ich nun mit [mm]n = n+1[/mm] ob die
> Gleichheit gilt.
>  Es folgt :
>  [mm]ggT(a*n+1,b*n+1) =ggT(a,b)[/mm]
>  
> Jetzt muss ich doch irgendwie die Vorraussetzung [mm]ggT(a,b)[/mm]
> in meinen Induktionsschritt einarbeiten. Kann ich den
> ggT(a,b) dann einmultiplizieren sodass
>  [mm]ggT(a*n+1,b*n+1) * ggT (a,b)[/mm] wird ?
>  
> Hier stecke ich irgendwie fest
>  
>
> lg
>  Micha


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]