www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktion für Ableitung
Induktion für Ableitung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion für Ableitung: Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 18:17 Do 10.11.2005
Autor: GetBack

Hallo Leute,

ich hab da ein Problem mit folgender Aufgabe (ich schreib einfach mal, was ich schon gemacht habe).

Beweis durch vollständige Induktion über n von [mm] {d^n \over dx^n} \left(x^2 -1 \right)^n = 2^n \cdot n! [/mm] für [mm] x=1 [/mm]
IA: n=1: [mm] {d \over dx} \left(x^2 -1 \right) = 2x [/mm] dann folgt für [mm] x=1: \quad 2=2^1 \cdot 1! [/mm]
IV: [mm] {d^n \over dx^n} \left(x^2 -1 \right)^n = 2^n \cdot n! [/mm] für [mm] x=1 [/mm] gelte für ein [mm] n \in \mathbb{N} [/mm].
IS:
[mm] {d^{n+1} \over dx^{n+1}} \left(x^2 -1 \right)^{n+1} = {d^{n+1} \over dx^{n+1}} \left( \sum_{k=0}^{n+1} {(-1)^k {n+1 \choose k} x^{2(n+1-k)}} \right)[/mm]
[mm]= {d^{n} \over dx^{n}} \left( {d \over dx} \left( \sum_{k=0}^{n+1} {(-1)^k {n+1 \choose k} x^{2(n+1-k)}} \right) \right)[/mm]
[mm]= {d^{n} \over dx^{n}} \left( \sum_{k=0}^{n} {(-1)^k {n+1 \choose k} \cdot 2(n+1-k) \cdot x^{2(n+1-k)-1}} \right)[/mm]
[mm]= 2 (n+1) \cdot {d^{n} \over dx^{n}} \left( \sum_{k=0}^{n} {(-1)^k {n \choose k} x^{2(n-k)+1}} \right) [/mm]

Wie man sieht, habe ich in der Summe ein x zuviel! Gehe ich an das Problem falsch heran oder fehlt mir einfach noch ein Schritt?
Bewiesen habe ich schon, dass [mm] {d^j \over dx^j} \left(x^2 -1 \right)^n = 0 [/mm] für [mm] 0 \le j < n, x=1 [/mm]. Aber das bringt mich auch nicht weiter.

Vielen Dank im Voraus
GetBack

        
Bezug
Induktion für Ableitung: Bitte keine Doppelpostings!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:32 Do 10.11.2005
Autor: Loddar

Hallo GetBack!


Bitte keine Doppelpostings hier innerhalb des MatheRaumes produzieren.

Diese Frage hast Du bereits hier gestellt ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]