Induktion einer Funktionfolge < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:33 Mi 08.11.2006 | Autor: | zero2006 |
Aufgabe | Sei n [mm] \in \IN [/mm] /{0}
Beweise, dass die Funktionen sin x, sin 2x, ..., sin nx im [mm] \IR [/mm] - Vektorraum aller Funktionen [mm] \IR \to \IR [/mm] linear unabhängig sind |
Also ich habe da ein kleines Problem mit dem Induktionsbeweis,
ich fang eingach mal an:
IA: sein n = 1
[mm] a\*sin [/mm] x ist in der tat nur dann die null-Funktion wenn a = 0
IS von n [mm] \to [/mm] n+1
Also jetzt fängt es an zu hapern es soll ja gelten wenn ich annehme
dass
[mm] a_{1}sin(x)+a_{2}sin(2x)+...+a_{n}sin(nx)=0
[/mm]
nur dann gilt wenn [mm] a_{1}=...=a_{n}=0
[/mm]
also muss man ja zeigen dass
[mm] a_{1}sin(x)+a_{2}sin(2x)+...+a_{n}sin(nx)+a_{n+1}sin((n+1)x)=0
[/mm]
wenn [mm] a_{1}=...=a_{n+1}=0
[/mm]
Jetzt haben wir einen Tip wir sollen mit der Ableitung arbeiten
wenn ich jetzt aber den letzten Term 2 x ableite dann bekomme ich doch nicht den (n+1) Term weg denn sin((n+1)x) zweimal abgeleitet ergibt ja
[mm] -(n+1)^{2}sin((n+1)x)
[/mm]
kann mir jetzt da einer helfen?!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:39 Mi 08.11.2006 | Autor: | leduart |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo zero
So wie du angefangen hast, kann ich dir nicht gut weiterhelfen.
Aber einen direkteren Beweis:
1.\summe_{i=1}^{n}a_i*sinix =0 daraus folgt die Ableitung ist auch 0
2.\summe_{i=1}^{n}a_i* i*cosix=0 also auch an der Stelle x=0 daraus
3.\summe_{i=1}^{n} a_i*i=0
4. Ableitung von 2. \summe_{i=1}^{n} -i^2*a_i sinix=0
5.Abltg von 4. \summe_{i=1}^{n}-i^3a_i*cosix=0 bei x=0:\summe_{i=1}^{n}i^3*a_i =0
usw, usw.
Damit bekommst du ein Gleichungssystem für die a_k
Wenn die Determinante davon \ne 0 dann bist du fertig. Das wiederum ist leichter mit vollst. Induktion zu zeigen.
Anderer Weg: \summe_{i=1}^{n}a_i*sinix =0 multipliziert mit sinkx und integriert über eine Periode 2\pi
also \summe_{i=1}^{n}a_i*\integral_{0}^{2\pi}sinix *sinkx dx}=0
Wegen \integral_{0}^{2\pi}sinix *sinkx dx}=0 für i\nek bleibt nur
a_k*\integral_{0}^{2\pi}sin^2kx dx}=0 und wegen \integral_{0}^{2\pi}sin^2kx dx}\ne 0 folgt a_k=0 und das für alle k\len
(Das heisst, dass die Funktionen orthogonal sind.
Den 2. Beweis find ich viel einfacher, Zu zeigen bleibt dir nur
\integral_{0}^{2\pi}sinix *sinkx dx}=0 für i\nek zweimalige partielle Integration zeigt das leicht.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:53 Mi 08.11.2006 | Autor: | zero2006 |
Hallo zero
So wie du angefangen hast, kann ich dir nicht gut weiterhelfen.
Aber einen direkteren Beweis:
[mm] 1.\summe_{i=1}^{n}a_i*sinix [/mm] =0 daraus folgt die Ableitung ist auch 0
[mm] 2.\summe_{i=1}^{n}a_i* [/mm] i*cosix=0 also auch an der Stelle x=0 daraus
[mm] 3.\summe_{i=1}^{n} a_i*i=0 [/mm]
4. Ableitung von 2. [mm] \summe_{i=1}^{n} -i^2*a_i [/mm] sinix=0
5.Abltg von 4. [mm] \summe_{i=1}^{n}-i^3a_i*cosix=0 [/mm] bei [mm] x=0:\summe_{i=1}^{n}i^3*a_i [/mm] =0
usw, usw.
Damit bekommst du ein Gleichungssystem für die [mm] a_k [/mm]
Wenn die Determinante davon [mm] \ne [/mm] 0 dann bist du fertig. Das wiederum ist leichter mit vollst. Induktion zu zeigen.
Anderer Weg: [mm] \summe_{i=1}^{n}a_i*sinix [/mm] =0 multipliziert mit sinkx und integriert über eine Periode [mm] 2\pi [/mm]
also [mm] \summe_{i=1}^{n}a_i*\integral_{0}^{2\pi}sinix [/mm] *sinkx dx =0
Wegen [mm] \integral_{0}^{2\pi}sinix [/mm] *sinkx dx =0 für [mm] i\nek [/mm] bleibt nur
[mm] a_k*\integral_{0}^{2\pi}sin^2kx [/mm] dx =0 und wegen [mm] \integral_{0}^{2\pi}sin^2kx [/mm] dx [mm] \ne [/mm] 0 folgt [mm] a_k=0 [/mm] und das für alle [mm] k\len [/mm]
(Das heisst, dass die Funktionen orthogonal sind.
Den 2. Beweis find ich viel einfacher, Zu zeigen bleibt dir nur
[mm] \integral_{0}^{2\pi}sinix [/mm] *sinkx dx=0 für [mm] i\nek [/mm] zweimalige partielle Integration zeigt das leicht.
Gruss leduart
Sorry musste es einfach nochmal kopieren waren ein paar tipp fehler drin
nochmals danke
|
|
|
|