www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktion Analysis I
Induktion Analysis I < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion Analysis I: Tipp bei Aufgabe 1?
Status: (Frage) beantwortet Status 
Datum: 11:54 So 01.11.2009
Autor: xhizux

Man zeige durch Induktion:
Für n ∈ N \ {1} gilt [mm] \summe_{k=0}^{n} \vektor{n \\ k} [/mm]  = [mm] 2^{n} [/mm]
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Man zeige durch Induktion:
Für n ∈ N \ {1} gilt [mm] \summe_{k=0}^{n} \vektor{n \\ k} [/mm]  = [mm] 2^{n} [/mm]
Nun mir ist das Prinzip schon klar, jedoch krieg ich den schritt mit der zuhilfenahme der induktionsvorraussetyung nicht hin, oder zumindest nicht ganz


ich würde zuerst n => n+1 und demnach steht da [mm] \summe_{k=0}^{n+1} \vektor{n+1 \\ k}, [/mm] wandle dieses zu [mm] \summe_{k=0}^{n} \vektor{n+1 \\ k} [/mm] , zerteile dies wieder in [mm] \summe_{k=0}^{n} \vektor{n \\ k} [/mm] + [mm] \vektor{n \\ k-1} [/mm] setzte die induktionsvorraussetzung ein.
demnach steht da nun  [mm] 2^{n} [/mm] + [mm] \vektor{n \\ k-1} [/mm]

nur weiß ich jetzt nicht weiter. wie beweise ich denn nun das da [mm] 2^{n+1} [/mm] rauskommt?

Wäre sehr freundlich wenn mir jemand einen tippn geben könnte.
danke

        
Bezug
Induktion Analysis I: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 So 01.11.2009
Autor: steppenhahn

Hallo!

Du hast deinen Beweis in solch einer Schnelligkeit verfasst, dass einige Ungenauigkeiten auftreten. Zu Beginn hast du:

[mm] $\sum_{k=0}^{n+1}\vektor{n+1\\k} [/mm] = [mm] \left(\sum_{k=0}^{n}\vektor{n+1\\k}\right) [/mm] + [mm] \vektor{n+1\\n+1} [/mm] = [mm] \left(\sum_{k=0}^{n}\vektor{n+1\\k}\right) [/mm] + 1$

Dein Ansatz ist nun richtig, wir wollen die Formel [mm] $\vektor{n+1\\ k} [/mm] = [mm] \vektor{n\\k} [/mm] + [mm] \vektor{n\\k-1}$ [/mm] anwenden. Es gibt allerdings ein Problem: Da die obige Summe von $k = 0$ losläuft, wäre der Ausdruck [mm] $\vektor{n\\k-1}$ [/mm] für $k = 0$ nicht besonders elegant. Deswegen werden wir vor dieser Umformung noch den Fall $k=0$ aus der Summe ziehen:

$= [mm] \left(\sum_{k=1}^{n}\vektor{n+1\\k}\right) +\vektor{n+1\\0} [/mm] + 1 = [mm] \left(\sum_{k=1}^{n}\vektor{n+1\\k}\right) [/mm] + 2$

Jetzt also Anwendung der Umformung:

$= 2 + [mm] \sum_{k=1}^{n}\left(\vektor{n\\k} + \vektor{n\\k-1}\right) [/mm] = 2 + [mm] \sum_{k=1}^{n}\vektor{n\\k} [/mm] + [mm] \sum_{k=1}^{n}\vektor{n\\k-1}$ [/mm]

Nun können wir in die erste Summe mit der 1 von vorn wieder den Summanden [mm] $\vektor{n\\0} [/mm] =1$ einfügen; bei der zweiten steht noch $k-1$ im Binomialkoeffizienten. Das umgehen wir, indem wir eine Indexverschiebung der Summe von 1 bis n zu 0 bis n-1 machen. Das bedeutet, in der Summe werden alle k's zu k+1:

$= 1 + [mm] \sum_{k=0}^{n}\vektor{n\\k} [/mm] + [mm] \sum_{k=0}^{n-1}\vektor{n\\k}$ [/mm]

Nun können wir auch die weitere 1 von vorn in die hintere Summe als Summand [mm] $\vektor{n\\n} [/mm] = 1$ einfügen:

$= [mm] \sum_{k=0}^{n}\vektor{n\\k} [/mm] + [mm] \sum_{k=0}^{n}\vektor{n\\k}$ [/mm]

So, und nun ist es noch ein Katzensprung :-)

Grüße,
Stefan

Bezug
        
Bezug
Induktion Analysis I: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:14 So 01.11.2009
Autor: xhizux

ah danke!! ★

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]