www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktion
Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Mo 04.02.2008
Autor: Charlie1984

Aufgabe
Beweisen Sie mit vollständiger Induktion :

[mm] \summe_{k=1}^{2n}\bruch{(-1)^{k+1}}{k} [/mm] = [mm] \summe_{k=n+1}^{2n}\bruch{1}{k} [/mm]

Also ich hab da mit der Aufagbe nen Problem.Eigentlich kann ich die vollst. Induktion, aber..

Also ich hab n [mm] \to [/mm] n+1 :


[mm] \summe_{k=1}^{2n+2}\bruch{(-1)^{k+1}}{k} [/mm] =

[mm] \summe_{k=1}^{2n}\bruch{(-1)^{k+1}}{k} [/mm] + [mm] \bruch{(-1)^{2n+2}}{2n+1} [/mm] + [mm] \bruch{(-1)^{2n+3}}{2n+2} [/mm] = [mm] \summe_{k=n+1}^{2n}\bruch{1}{k} [/mm] + [mm] \bruch{(-1)^{2n+2}}{2n+1} [/mm] + [mm] \bruch{(-1)^{2n+3}}{2n+2} [/mm] = [mm] \summe_{k=n+1}^{2n}\bruch{1}{k} [/mm] + [mm] \bruch{1}{2n+1} [/mm] + [mm] \bruch{-1}{2n+2} [/mm]

aber jetzt komm ich einfach nicht weiter..kann mir jmd nen tipp geben ?

        
Bezug
Induktion: Tipp
Status: (Antwort) fertig Status 
Datum: 15:40 Mo 04.02.2008
Autor: Roadrunner

Hallo Charlie!


Schreibe Dir doch mal den gewünschten Ausdruck für [mm] $\summe_{k=n+2}^{2n+2}\bruch{1}{k}$ [/mm] auf:

[mm] $$\summe_{k=n+2}^{2n+2}\bruch{1}{k} [/mm] \ = \ [mm] -\bruch{1}{n+1}+\summe_{k=n+1}^{2n}\bruch{1}{k}+\bruch{1}{2n+1}+\bruch{1}{2n+2}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Mo 04.02.2008
Autor: Charlie1984

Alles klar..ich habs..danke dir..!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]