www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktion :(
Induktion :( < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion :(: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 So 22.10.2006
Autor: Sutoppu

Aufgabe
Beweisen Sie die folgende Aussage:

[mm] \summe_{k=0}^{n} [/mm] k* [mm] \vektor{n \\ k} [/mm] = n * 2^(n-1)

Hallo :(

ich bin am verzweifeln, ich soll diese Aussage beweisen und das mit vollständiger Induktion, aber ich hab gar keine ahnung, ich bekomm nicht mal den induktionsanfang hin. Das ist zwar jetzt mega dreisst von mir das ich hier nichts angeben kann was ich schon dazu gemacht hab, aber ich hoffe ihr könnt mir trotzdem helfen...

byebye, sutoppu

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktion :(: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 So 22.10.2006
Autor: angela.h.b.


> Beweisen Sie die folgende Aussage:
>  
> [mm] \summe_{k=0}^{n} [/mm] k* [mm] \vektor{n \\ k}= [/mm] n * 2^(n-1)


Hallo,


[willkommenmr].

>  
> ich soll diese Aussage beweisen und
> das mit vollständiger Induktion, aber ich hab gar keine
> ahnung, ich bekomm nicht mal den induktionsanfang hin.

Weißt Du, was das Summenzeichen bedeutet?

Weißt Du, was [mm] \vektor{n \\ k} [/mm] bedeutet?

Weißt Du, wie die vollständige Induktion vom Prinzip her geht?
Das Rezept:
1. Zeige, daß die Aussage für den "Startwert" gilt, hier wäre das  wohl n=1.
2. Nimm an, daß die Aussage für jedes n gilt.
3. Zeige, daß die Aussage auch dann gilt, wenn man für n an jeder Stelle durch n+1 ersetzt.

Konkret:
1. Zeige, daß die Aussage für n=1 richtig ist, daß also [mm] \summe_{k=0}^{1} [/mm] 1* [mm] \vektor{1 \\ k} [/mm] = 1 * [mm] 2^{(1-1)} [/mm]

2. Nimm einfach an, daß [mm] \summe_{k=0}^{n} [/mm] k* [mm] \vektor{n \\ k} [/mm] = n * [mm] 2^{(n-1)} [/mm] für alle n [mm] \in \IN [/mm] stimmt.

3. Zeige, daß [mm] \summe_{k=0}^{n+} [/mm] k* [mm] \vektor{n+1 \\ k}= [/mm] (n+1) * [mm] 2^{(n+1-1)} [/mm] gilt.

Hierfür mußt Du [mm] \summe_{k=0}^{n+1} [/mm] k* [mm] \vektor{n+1 \\ k} [/mm] möglichst geschickt umformen und an irgendeiner passenden Stelle die Aussage von 2. verwenden.

Ich würde vorschlagen, Du fängst nun erstmal an, und dann sehen wir weiter.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]