www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Impulsantwort in dig. Systemen
Impulsantwort in dig. Systemen < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Impulsantwort in dig. Systemen: Impulsantwort aus diff. Gl.
Status: (Frage) beantwortet Status 
Datum: 14:49 Di 01.05.2012
Autor: delta_von_k

Aufgabe
Gegeben ist die Differenzengleichung
y(k) = x(k) + 0,8x(k-1) - 0,4x(k-2) + 0,5y(k-1)
Gesucht ist die Impulsantwort des Systems nach 5 Stellen

Ich tue mich bei dieser Aufgabe etwas schwer, der zusammenhang ist Impulsantwort ist ja durch die Faltung beschrieben mit
y(k) = x(k) [mm] \* [/mm] g(k) = [mm] \summe_{i=0}^{n} [/mm] x(i)*g(k-i)
Nun komme ich aber nicht weiter. Ich habe auch darüber nachgedacht durch die Z-Transformation auf die Impulsantwort zukommen, ist das vielelicht der richtige Ansatz?  Hat Jemand eine Idee?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Impulsantwort in dig. Systemen: z-Transformierte
Status: (Antwort) fertig Status 
Datum: 18:47 Mi 02.05.2012
Autor: Infinit

Hallo [mm] delta_von_k, [/mm]
zunächst einmal herzlich willkommen hier bei der Vorhilfe.
Die Aufgabe, die Du vor Dir hast, kannst Du über die z-Transformation lösen und ich will Dir auch zeigen, wie das geht.
Die Impulsantwort, die Du suchst, ist dann die Rücktransformierte des Verhältnisses von Y zu X im z-Bereich.
Fange damit an, die Differenzengleichung so zu schreiben, dass die y-Terme links vom Gleichheitszeichen stehen, die x-Terme rechts davon, also in allgemeiner Form
[mm] \sum_{j=0}^N a_j y(k-j) = \sum_{i=0}^M b_i x (k-i) [/mm]
In den Z-Bereich transformiert, bekommst Du Potenzen von z in die Ausdrücke von z mit rein, je nach zeitlicher Verzögerung. Damit hast Du
[mm] \sum_{j=0}^N a_j z^{-j} Y(z) = \sum_{i=0}^M b_i z^{-j} X (z) [/mm]
Hieraus bekommst Du durch einfaches Dividieren das Verhältnis [mm] \bruch{Y(z)}{X(z)} [/mm] und das ist genau die z-Transformierte Deiner Impulsantwort, auch Übertragungsfunktion genannt.
[mm] H(z) = \bruch{Y(z)}{X(z)} [/mm]
Die Impulsantwort h(n) ist dann die Rücktransformierte von H(z).
Viel Spaß beim Rechnen wünscht
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]