www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Implizites Differenzieren
Implizites Differenzieren < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizites Differenzieren: Potenze
Status: (Frage) beantwortet Status 
Datum: 22:17 So 14.11.2010
Autor: blackkilla

Hallo zusammen

Wenn ich [mm] y^5=x^6 [/mm] habe, wie muss ich vorgehen, damit ich nur y auf der einen Seite habe, damit ich es dann in [mm] y'=\bruch{6x^5}{5y^4} [/mm] einsetzen kann?

        
Bezug
Implizites Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 So 14.11.2010
Autor: MathePower

Hallo blackkilla,

> Hallo zusammen
>  
> Wenn ich [mm]y^5=x^6[/mm] habe, wie muss ich vorgehen, damit ich nur
> y auf der einen Seite habe, damit ich es dann in
> [mm]y'=\bruch{6x^5}{5y^4}[/mm] einsetzen kann?


Ziehe auf beiden Seiten die 5. Wurzel.


Gruss
MathePower

Bezug
                
Bezug
Implizites Differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 So 14.11.2010
Autor: blackkilla

Das gäbe dann [mm] y=x^\bruch{6}{5} [/mm]

Und wenn ich das dann in y' einsetze: [mm] \bruch{6x^5}{5x^\bruch{24}{5}} [/mm]

Richtig?

Bezug
                        
Bezug
Implizites Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 So 14.11.2010
Autor: MontBlanc

Hallo,

das stimmt.

LG

Bezug
                                
Bezug
Implizites Differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:25 So 14.11.2010
Autor: blackkilla

Nun habe ich [mm] \bruch{dy^2}{dx^2} [/mm] berechnet. --> [mm] 20y^3*(y')^2+5y^4*y''=30x^4, [/mm] auf y'' gelöst gibt das:

[mm] y''=\bruch{30x^4-(20y^3*(y')^2)}{5y^4} [/mm] Hier kann ich nun das y und y', die ich berechnet habe, einsetzen.

[mm] y=x^\{6}{5} [/mm]
[mm] y'=\bruch{6}{5}x^\bruch{1}{5} [/mm]

Durchs einsetzen habe ich folgendes erhalten:

[mm] \bruch{30x^4-(20x^\bruch{18}{5}*\bruch{12}{5}x^\bruch{2}{5})}{5x^\bruch{24}{5}} [/mm]  Ist das überhaupt richtig oder wie muss ich z.B. [mm] (y')^2 [/mm] korrekt berechnen?

Wenn es richtig ist, wie kann ich da weiterfahren?

Bezug
                                        
Bezug
Implizites Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Mo 15.11.2010
Autor: leduart

Hallo
soweit richtig, du solltest aber noch zusammenfassen und das Ganze als
[mm] a*x^b [/mm] hinschreiben.
Gruss leduart


Bezug
                                                
Bezug
Implizites Differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Mo 15.11.2010
Autor: blackkilla

Eben genau da komm ich nicht weiter. Wie fass ich das zusammen?

Bezug
                                                        
Bezug
Implizites Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Mo 15.11.2010
Autor: leduart

Hallo
Die zahlen kannst du wohl selbst zusammenfassen.
dann [mm] x^a*x^b=x^{a+b} [/mm] und [mm] x^a/x^b=x^{a-b} [/mm]
Gruss leduart


Bezug
                                                                
Bezug
Implizites Differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Mo 15.11.2010
Autor: blackkilla

Ok habs jetz ma ausgerechnet: Komme auf [mm] (\bruch{-18}{5})x^\bruch{-4}{5}. [/mm] Stimmt das?

Bezug
                                                                        
Bezug
Implizites Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Mo 15.11.2010
Autor: schachuzipus

Hallo blackkilla,

> Ok habs jetz ma ausgerechnet: Komme auf
> [mm](\bruch{-18}{5})x^\bruch{-4}{5}.[/mm] [ok]

> Stimmt das?


Darauf komme ich auch!

Gruß

schachuzipus

Bezug
                                                                                
Bezug
Implizites Differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Mo 15.11.2010
Autor: blackkilla

Irgendetwas kann nicht stimmen. Bei den Lösungen steht nämlich [mm] \bruch{6}{25}x^\bruch{-4}{5}.... [/mm]

Bezug
                                                                                        
Bezug
Implizites Differenzieren: Fehler weiter oben
Status: (Antwort) fertig Status 
Datum: 19:54 Mo 15.11.2010
Autor: Loddar

Hallo blackkilla!


Deine Muster-Lösung lügt nicht.

Du hast oben wohl falsch eingesetzt. Es gilt:

[mm]\left(y'\right)^2 \ = \ \left(\bruch{6}{5}*x^{\bruch{1}{5}}\right)^2 \ = \ \left(\bruch{6}{5}\right)^2*\left(x^{\bruch{1}{5}}\right)^2 \ = \ \bruch{\red{36}}{\red{25}}*x^{\bruch{2}{5}}[/mm]


Gruß
Loddar


Bezug
                                                                                                
Bezug
Implizites Differenzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:00 Mo 15.11.2010
Autor: blackkilla

Yep danke vielmal! Es war eben doch das [mm] (y')^2. [/mm] :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]