www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Implizite Funktionen
Implizite Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Sa 20.06.2009
Autor: Heureka89

Aufgabe
Sei f(x,y):= [mm] x^5+5x^4-16y^2, [/mm] M:={(x,y) [mm] \in \IR^2: [/mm] f(x,y)=0}. Zeigen Sie mit Hilfe des Satzes über implizite Funktionen, dass die Gleichung f(x,y)=0 in allen Punkten [mm] (x,y)\not=(0,0) [/mm] lokal nach x oder y aufgelöst werden kann.
Versuchen Sie mit Hilfe der lokalen Auflösung so viel über die Menge M herauszubekommen, dass Sie sie skizzieren können. Ist M eine Untermannigfaltigkeit?

Also beim ersten Teil der Aufgabe müsste ich doch zeigen, dass [mm] \bruch{df}{dy}(x,y)=-32y [/mm] ungleich 0 ist, damit man f(x,y)=0 lokal nach y auflösen kann.
Und es muss [mm] \bruch{df}{dx}(x,y)=5x^3(x-4) [/mm] ungleich 0 sein, damit man f(x,y)=0 lokal nach x auflösen kann.
Was ich nun nicht verstehe, wieso das nun erfüllt ist?
Für die anderen Teile der Aufgabe fehlt mir bisher eine Idee.

        
Bezug
Implizite Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Sa 20.06.2009
Autor: MathePower

Hallo Heureka89,

> Sei f(x,y):= [mm]x^5+5x^4-16y^2,[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

M:={(x,y) [mm]\in \IR^2:[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> f(x,y)=0}. Zeigen Sie mit Hilfe des Satzes über implizite
> Funktionen, dass die Gleichung f(x,y)=0 in allen Punkten
> [mm](x,y)\not=(0,0)[/mm] lokal nach x oder y aufgelöst werden kann.
>  Versuchen Sie mit Hilfe der lokalen Auflösung so viel über
> die Menge M herauszubekommen, dass Sie sie skizzieren
> können. Ist M eine Untermannigfaltigkeit?
>  Also beim ersten Teil der Aufgabe müsste ich doch zeigen,
> dass [mm]\bruch{df}{dy}(x,y)=-32y[/mm] ungleich 0 ist, damit man
> f(x,y)=0 lokal nach y auflösen kann.
> Und es muss [mm]\bruch{df}{dx}(x,y)=5x^3(x-4)[/mm] ungleich 0 sein,


Hier muß es doch heißen:

[mm]\bruch{df}{dx}(x,y)=5x^3(x\red{+}4)[/mm]


> damit man f(x,y)=0 lokal nach x auflösen kann.
> Was ich nun nicht verstehe, wieso das nun erfüllt ist?
>  Für die anderen Teile der Aufgabe fehlt mir bisher eine
> Idee.


Es muß entweder [mm]\bruch{\partial f}{\partial y}\left(x,y\right) \not=0[/mm] oder
[mm]\bruch{\partial f}{\partial x}\left(x,y\riight) \not=0[/mm] sein, damit nach y bzw. x
aufgelöst werden kann.


Gruß
MathePower

Bezug
                
Bezug
Implizite Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:37 Sa 20.06.2009
Autor: Heureka89

Hallo,
danke für die Antwort.
Was ich aber noch nicht verstehe: [mm] \bruch{df}{dx}(x.y)=5x^3(x+4) [/mm] ist doch für x=-4 nicht ungleich 0. Deshalb verstehe ich nicht, wieso man f(x,y)=0 nach x auflösen kann?


Bezug
                        
Bezug
Implizite Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 So 21.06.2009
Autor: MathePower

Hallo Heureka89,

> Hallo,
>  danke für die Antwort.
>  Was ich aber noch nicht verstehe:
> [mm]\bruch{df}{dx}(x.y)=5x^3(x+4)[/mm] ist doch für x=-4 nicht
> ungleich 0. Deshalb verstehe ich nicht, wieso man f(x,y)=0
> nach x auflösen kann?
>  


Im Fall x=-4 muß nach y aufgelöst werden, da [mm]y \not= 0[/mm].


Gruß
MathePower

Bezug
                
Bezug
Implizite Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:14 So 21.06.2009
Autor: abakus


> Hallo Heureka89,
>  
> > Sei f(x,y):= [mm]x^5+5x^4-16y^2,[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}"

> müssen immer paarweise auftreten, es wurde aber ein Teil
> ohne Entsprechung gefunden (siehe rote Markierung)
>  
> M:={(x,y) [mm]\in \IR^2:[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer

> paarweise auftreten, es wurde aber ein Teil ohne
> Entsprechung gefunden (siehe rote Markierung)
>  
>
> > f(x,y)=0}. Zeigen Sie mit Hilfe des Satzes über implizite
> > Funktionen, dass die Gleichung f(x,y)=0 in allen Punkten
> > [mm](x,y)\not=(0,0)[/mm] lokal nach x oder y aufgelöst werden kann.
>  >  Versuchen Sie mit Hilfe der lokalen Auflösung so viel
> über
> > die Menge M herauszubekommen, dass Sie sie skizzieren
> > können. Ist M eine Untermannigfaltigkeit?
>  >  Also beim ersten Teil der Aufgabe müsste ich doch
> zeigen,
> > dass [mm]\bruch{df}{dy}(x,y)=-32y[/mm] ungleich 0 ist, damit man
> > f(x,y)=0 lokal nach y auflösen kann.
> > Und es muss [mm]\bruch{df}{dx}(x,y)=5x^3(x-4)[/mm] ungleich 0 sein,
>
>
> Hier muß es doch heißen:
>  
> [mm]\bruch{df}{dx}(x,y)=5x^3(x\red{+}4)[/mm]
>  
>
> > damit man f(x,y)=0 lokal nach x auflösen kann.
> > Was ich nun nicht verstehe, wieso das nun erfüllt ist?
>  >  Für die anderen Teile der Aufgabe fehlt mir bisher eine
> > Idee.
>
>
> Es muß entweder [mm]\bruch{\partial f}{\partial y}\left(x,y\right) \not=0[/mm]
> oder
>  [mm]\bruch{\partial f}{\partial x}\left(x,y\riight) \not=0[/mm]
> sein, damit nach y bzw. x
>  aufgelöst werden kann.

Hallo,
mit deiner Formulierung  "...nach y bzw. x..." verschleierst du das Problem, indem du das "bzw." möglicherweise als "und" interpretierst.
Weiter oben habe ich an dieser Stelle ein "oder" gelesen.
Gruß Abakus

>  
>
> Gruß
>  MathePower


Bezug
                        
Bezug
Implizite Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 So 21.06.2009
Autor: Heureka89

Sorry, ich hatte einen Denkfehler, habe auch den ersten Teil der Aufgabe jetzt verstanden, es klappt auch alles.
Hat vielleicht jemand eine Idee, wei ich die Gleichung lokal nach x auflösen könnte, damit ich genug weiß, um die Menge M zu skizzieren?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]