www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Implizite Funktion
Implizite Funktion < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite Funktion: Tipp, Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:35 So 29.01.2017
Autor: stefmeff

Aufgabe
Zeigen Sie, dass die implizite Funktion

[mm] x^{2/3} [/mm] + [mm] y^{2/3} [/mm] = 1

im Punkt P = (a;0) a [mm] \not= [/mm] 0, eine waagerechte Tangente besitzt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Guten Tag,


ich habe versucht diese Aufgabe zu lösen.
Nur leider komme ich nicht weiter

Schritt 1.
erste Ableitung f´x und f´y

f´x =  2 / 3* [mm] \wurzel[3]{x} [/mm]

f´x =  2 / 3* [mm] \wurzel[3]{y} [/mm]

2. Schritt

y´ = f´x / f´y um die Steigung zu bestimmen

y´= (2 / 3* [mm] \wurzel[3]{x}) [/mm] /  (2 / 3* [mm] \wurzel[3]{y}) [/mm]

Und

von der ersten Ableitung f´x würde ich die Nullstellen bestimmen nur ich verstehe nicht wie ich da auf einen weiteren Wert komme, außer X = 0, welches nicht in betracht kommt, da a /not= 0.

        
Bezug
Implizite Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 So 29.01.2017
Autor: Diophant

Hallo,

vorneweg: ich glaube, du hast den Begriff Implizite Funktion noch nicht wirklich verstanden (ist ja auch nicht so einfach).

> Zeigen Sie, dass die implizite Funktion

>

> [mm]x^{2/3}[/mm] + [mm]y^{2/3}[/mm] = 1

>

> im Punkt P = (a;0) a [mm]\not=[/mm] 0, eine waagerechte Tangente
> besitzt.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Guten Tag,

>
>

> ich habe versucht diese Aufgabe zu lösen.
> Nur leider komme ich nicht weiter

>

> Schritt 1.
> erste Ableitung f´x und f´y

Ja, und schon hier kann das i.a. nicht funktionieren. Es geht hier nicht einfach um eine mehrdimensionale Funktion, für die sich partielle Ableitungen bestimmen lassen. Eine implizite Darstellung wählt man ja gerade dann, wenn eine explizite D. nicht möglich ist (was hier vorliegt, wie man leicht nachrechnet).

>

> f´x = 2 / 3* [mm]\wurzel[3]{x}[/mm]

>

> f´x = 2 / 3* [mm]\wurzel[3]{y}[/mm]

>

> 2. Schritt

>

> y´ = f´x / f´y um die Steigung zu bestimmen

>

> y´= (2 / 3* [mm]\wurzel[3]{x})[/mm] / (2 / 3* [mm]\wurzel[3]{y})[/mm]

>

Wie gesagt: mit diesen Rechnungen kommst du hier nicht weiter. Leite die Gleichung (also beide Seiten) nach x ab (beachte dabei die Kettenregel und löse anschließend nach y' auf. Jetzt kannst du den Punkt auf der rechten Seite einsetzen und erhältst das gewünschte Ergebnis.


Gruß, Diophant

Bezug
        
Bezug
Implizite Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Mo 30.01.2017
Autor: fred97

1. Ich muss Diophant widersprechen. Ist durch die Gl.

$f(x,y)=0$

implizit eine Funktion y definiert, gilt also

$f(x,y(x))=0$,

so erhält man mit der Kettenregel:

(*)  [mm] $f_x(x,y(x))+f_y(x,y(x))y'(x)=0$ [/mm] und somit, falls [mm] f_y(x,y(x)) \ne0: [/mm]

$y'(x)=- [mm] \frac{f_x(x,y(x))}{f_y(x,y(x))}$. [/mm]


2. Im vorliegenden Fall ist $f(x,y)= [mm] x^{2/3} +y^{2/3} [/mm]  -1 $

Aus (*) sieht man: ist y'(a)=0, so ist [mm] f_x(a,y(a))=0. [/mm]

Nun ist [mm] f_x(a,y(a)) [/mm] =  [mm] \frac{2}{3 \wurzel[3]{a}} [/mm]

Für kein a [mm] \ne [/mm] 0 ist das =0 !

Fazit: die Aufgabe ist Murks.


Bezug
                
Bezug
Implizite Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:48 Mo 30.01.2017
Autor: Diophant

Hallo Fred,

> 1. Ich muss Diophant widersprechen. Ist durch die Gl.

>

> [mm]f(x,y)=0[/mm]

>

> implizit eine Funktion y definiert, gilt also

>

> [mm]f(x,y(x))=0[/mm],

>

> so erhält man mit der Kettenregel:

>

> (*) [mm]f_x(x,y(x))+f_y(x,y(x))y'(x)=0[/mm] und somit, falls
> [mm]f_y(x,y(x)) \ne0:[/mm]

>

> [mm]y'(x)=- \frac{f_x(x,y(x))}{f_y(x,y(x))}[/mm].

>
>

> 2. Im vorliegenden Fall ist [mm]f(x,y)= x^{2/3} +y^{2/3} -1[/mm]

>

> Aus (*) sieht man: ist y'(a)=0, so ist [mm]f_x(a,y(a))=0.[/mm]

>

> Nun ist [mm]f_x(a,y(a))[/mm] = [mm]\frac{2}{3 \wurzel[3]{a}}[/mm]

>

> Für kein a [mm]\ne[/mm] 0 ist das =0 !

>

> Fazit: die Aufgabe ist Murks.

Ich glaube, wir meinen das gleiche. Ich erhalte konkret für die Ableitung y':

[mm] y'=-\wurzel[3]{\frac{y}{x}} [/mm]

Und die folgende Zeichnung (ok, Geogebra nimmts mit der Definitionsmenge nicht so genau) legt doch nahe dass y' an der einzigen Stelle mit y=0 (das ist x=1) ebenfalls 0 wird:

[Dateianhang nicht öffentlich]


Gruß, Diophant
 

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]