www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Implizite Funk. Ableitung
Implizite Funk. Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite Funk. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mi 25.05.2011
Autor: engels

Aufgabe
Gegeben sei:
[mm] F(x,y,z)=x^{2}yz^{4}+xz^{2}+y^{3}z-3 [/mm]

Sei g(x,y)=z mit F(x,y,g(x,y))=0. Berechne das erste Taylorpolynom von g(x,y) und damit eine Approximation für den Funktionswert von g(0.9,1.1).

Ich hätte das Taylorpolynom in dem Fall erstmal definiert als:

T(x,y)= dg/dx(0.9,1.1)*x + dg/dy(0.9,1.1)*y

Mein Problem hierbei ist, dass ich dg/dx bzw. dg/dy nicht bestimmten kann. Kann mit dabei jemand helfen?

        
Bezug
Implizite Funk. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Mi 25.05.2011
Autor: Al-Chwarizmi


> Gegeben sei:
> [mm]F(x,y,z)=x^{2}yz^{4}+xz^{2}+y^{3}z-3[/mm]
>  
> Sei g(x,y)=z mit F(x,y,g(x,y))=0. Berechne das erste
> Taylorpolynom von g(x,y) und damit eine Approximation für
> den Funktionswert von g(0.9,1.1).
>  Ich hätte das Taylorpolynom in dem Fall erstmal definiert
> als:
>  
> T(x,y)= dg/dx(0.9,1.1)*x + dg/dy(0.9,1.1)*y
>  
> Mein Problem hierbei ist, dass ich dg/dx bzw. dg/dy nicht
> bestimmten kann. Kann mit dabei jemand helfen?


Bilde die partiellen Ableitungen der Funktion nach x
und nach y.

Beispiel: die Ableitung der Gleichung

       [mm] x^{2}*y*z^{4}+x*z^{2}+y^{3}z-3=0 [/mm]

nach x ist:

    $\ [mm] (2*x)*y*z^4+x^2*y*(4\,z^3*\frac{\partial z}{\partial x})+z^2+x*(2*z*\frac{\partial z}{\partial x})+y^3*\frac{\partial z}{\partial x}=0$ [/mm]

(immer dran denken, dass z auch Funktion von x ist, und
die Produkt- und Kettenregel richtig anwenden !)

Nun kann man diese Gleichung nach [mm] \frac{\partial z}{\partial x} [/mm] auflösen
und die Koordinaten (x,y,z) des vorgegebenen Punktes
einsetzen.
Analog dann für die Ableitung [mm] \frac{\partial z}{\partial y} [/mm] .

LG    Al-Chw.


Bezug
                
Bezug
Implizite Funk. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Do 26.05.2011
Autor: engels

Das klingt ja schon ganz logisch, nur wenn ich nach [mm] \bruch{dz}{dx} [/mm] umforme, erhalte ich wieder einen Term der abhängig von z ist. Im Taylorpolynom soll ja allerdings kein z vorkommen, da ich dort ja nur x und y einsetze.

Wie bekomm ich denn jetzt das z weg?

Bezug
                        
Bezug
Implizite Funk. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Do 26.05.2011
Autor: Al-Chwarizmi


> Das klingt ja schon ganz logisch, nur wenn ich nach
> [mm]\bruch{dz}{dx}[/mm] umforme, erhalte ich wieder einen Term der
> abhängig von z ist. Im Taylorpolynom soll ja allerdings
> kein z vorkommen, da ich dort ja nur x und y einsetze.
>
> Wie bekomm ich denn jetzt das z weg?


Die Ableitungen [mm] \frac{\partial z}{\partial x} [/mm]  und  [mm] \frac{\partial z}{\partial y} [/mm] brauchst du ja nur im
Entwicklungspunkt, den du noch wählen kannst.
Es empfiehlt sich dazu der Punkt (1|1|1), in dem
die Flächengleichung offensichtlich erfüllt ist
und der recht nahe an der gewünschten Stelle liegt.

LG    Al-Chw.


Bezug
                                
Bezug
Implizite Funk. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Fr 27.05.2011
Autor: engels

Oke, das habe ich gemacht, nur wunder ich mich etwas über das Ergebnis:

[mm] \bruch{dz}{dx} [/mm] = - [mm] \bruch{3}{7} [/mm]
[mm] \bruch{dz}{dy} [/mm] = - [mm] \bruch{4}{7} [/mm]

Wenn ich die Werte so in meiner Taylorentwicklung einsetze komme ich auf:

[mm] -\bruch{3}{7}*0,9+ [/mm] - [mm] \bruch{4}{7}*1,1 [/mm] = -1,041...

Das "-" wundert mich etwas, da der Wert doch eigentlich gegen 1 gehen müsste, oder?

Bezug
                                        
Bezug
Implizite Funk. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Fr 27.05.2011
Autor: Al-Chwarizmi


> Oke, das habe ich gemacht, nur wunder ich mich etwas über
> das Ergebnis:
>  
> [mm]\bruch{dz}{dx}[/mm] = - [mm]\bruch{3}{7}[/mm]
>  [mm]\bruch{dz}{dy}[/mm] = - [mm]\bruch{4}{7}[/mm]

Die Ableitungswerte stimmen.

> Wenn ich die Werte so in meiner Taylorentwicklung einsetze
> komme ich auf:
>
> [mm]-\bruch{3}{7}*0,9+[/mm] - [mm]\bruch{4}{7}*1,1[/mm] = -1,041...    [haee]

Du musst beachten, dass wir es hier mit einer Taylorent-
wicklung beim Stützpunkt (1|1|1) zu tun haben !
  

> Das "-" wundert mich etwas, da der Wert doch eigentlich
> gegen 1 gehen müsste, oder?

Ja, der richtige Wert für die Approximation von g(0.9,1.1)
liegt recht nahe bei +1 .

LG    Al-Chw.


Bezug
                                                
Bezug
Implizite Funk. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Fr 27.05.2011
Autor: engels

Oke, ich hab nochmal nachgeschlagen und hoffe, dass ich es jetzt richtig verstanden habe. Also ich entwickle g(x,y) im Punkt (1,1). Daher hat die Taylorentwicklung im meinem Fall die Form:

T(x,y) = g(1,1) + dz/dx(1,1,1)*(x-1) +dz/dy(1,1,1)*(y-1)

==> T(0.9,1.1) = 1 + [mm] -\bruch{3}{7}\cdot{}(0,9-1)+ -\bruch{4}{7}\cdot{}(1.1-1) \approx [/mm] 0.9857...

Bezug
                                                        
Bezug
Implizite Funk. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Fr 27.05.2011
Autor: MathePower

Hallo engels,

> Oke, ich hab nochmal nachgeschlagen und hoffe, dass ich es
> jetzt richtig verstanden habe. Also ich entwickle g(x,y) im
> Punkt (1,1). Daher hat die Taylorentwicklung im meinem Fall
> die Form:
>  
> T(x,y) = g(1,1) + dz/dx(1,1,1)*(x-1) +dz/dy(1,1,1)*(y-1)
>  
> ==> T(0.9,1.1) = 1 + [mm]-\bruch{3}{7}\cdot{}(0,9-1)+ -\bruch{4}{7}\cdot{}(1.1-1) \approx[/mm]
> 0.9857...


[ok]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]