www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Identität ist linear
Identität ist linear < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Identität ist linear: Nachweis richtig?
Status: (Frage) beantwortet Status 
Datum: 17:46 Fr 16.10.2009
Autor: Pacapear

Hallo zusammen!



Ich habe hier stehen, dass wenn V und V' K-Vektorräume sind, dass dann $id:V [mm] \to [/mm] V$ mit $v [mm] \mapsto [/mm] v$ linear ist, und ich würde gerne wissen, ob der Nachweis, den ich dafür geführt habe, richtig ist.

Also es müsste ja dann $V=V'$ sein, oder?

Und $f(v)=v$ nach Abbildungsschrift.



1) Ich muss zeigen, dass $f(v+v)=f(v)+f(v)$ ist.

Ich bin so vorgegangen: $f(v+v)=f(2v)=2v=v+v=f(v)+f(v)$

Das $f(2v)=2v$ hab ich einfach anhand der Abbildungsvorschrift erhalten.

Also ist $f(v+v)=f(v)+f(v)$ erfüllt.



2) Ich muss zeigen, dass $f(a*v)=a*f(v)$ ist.

Hier habe ich direkt mit der Abbildungsvorschrift gestartet:

$f(a*v)=a*v=a*f(v)$

Also ist $f(a*v)=a*f(v)$ erfüllt.



Ist der Nachweis so in Ordnung?

LG, Nadine



P.S.: Gilt die Definition von linearen Abbildungen eigentlich nur für Vektorräume (so haben wir es definiert) oder können auch "normale" Funktionen wie z.B. Funktionen von [mm] \IR [/mm] nach [mm] \IR [/mm] linear sein?

        
Bezug
Identität ist linear: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Fr 16.10.2009
Autor: piet.t

Hallo Nadine,

>  
> Also es müsste ja dann [mm]V=V'[/mm] sein, oder?

[ok]

>  
> Und [mm]f(v)=v[/mm] nach Abbildungsschrift.
>  
>
>
> 1) Ich muss zeigen, dass [mm]f(v+v)=f(v)+f(v)[/mm] ist.
>  
> Ich bin so vorgegangen: [mm]f(v+v)=f(2v)=2v=v+v=f(v)+f(v)[/mm]

Das ist so nicht ganz richtig. Was soll denn "2" sein? So etwas muss es in einem allgemeinen Körper K nicht geben. Aber gehe doch einfach so vor wie bei 2): wende auf die linke und die rechte Seite der Behauptung die Abbildungsvorschrift an und stelle fest, dass das gleiche rauskommt.

Auserdem denke ich, dass du das ganze für zwei (im allgemeinen) verschiedene Vektoren zeigen musst, also $f(v+w) = f(v) + f(w)$ (was aber am Vorgehen eigentlich nichts ändert). Schau da noch mal in eurer Definition nach.

>  
> Das [mm]f(2v)=2v[/mm] hab ich einfach anhand der
> Abbildungsvorschrift erhalten.
>  
> Also ist [mm]f(v+v)=f(v)+f(v)[/mm] erfüllt.
>  
>
>
> 2) Ich muss zeigen, dass [mm]f(a*v)=a*f(v)[/mm] ist.
>  
> Hier habe ich direkt mit der Abbildungsvorschrift
> gestartet:
>  
> [mm]f(a*v)=a*v=a*f(v)[/mm]
>  
> Also ist [mm]f(a*v)=a*f(v)[/mm] erfüllt.

[ok]

>  
>
>
> Ist der Nachweis so in Ordnung?
>  
> LG, Nadine
>  
>
>
> P.S.: Gilt die Definition von linearen Abbildungen
> eigentlich nur für Vektorräume (so haben wir es
> definiert) oder können auch "normale" Funktionen wie z.B.
> Funktionen von [mm]\IR[/mm] nach [mm]\IR[/mm] linear sein?

Abbildungen von [mm] \IR [/mm] nach [mm] \IR [/mm] können natürlich auch linear sein - man kann ja [mm] \IR [/mm] mit dem Vektorraum [mm] \IR^1 [/mm] identifizieren und dann die Definition entsprechend anwenden. Natürlich könnte man hier eine lineare Abbildung auch definieren, ohne erst "künstlich" einen Vektorraum einzuführen. Allerdings sind lineare Abbildungen gerade die, die zur Vektorraumstruktur "passen": Auf einem Vektorraum gibt es die zwei Operationen Addition und skalare Multiplikation und die Anforderungen an eine lineare Funktion bedeuten ja gerade, dass sich die Funktion bezüglich dieser Operationen "vernünftig" verhält.

Gruß

piet

Bezug
                
Bezug
Identität ist linear: Nun richtig?
Status: (Frage) beantwortet Status 
Datum: 18:44 Fr 16.10.2009
Autor: Pacapear

Hallo piet!

Danke für deine Antwort.



>  Das ist so nicht ganz richtig. Was soll denn "2" sein? So
> etwas muss es in einem allgemeinen Körper K nicht geben.
> Aber gehe doch einfach so vor wie bei 2): wende auf die
> linke und die rechte Seite der Behauptung die
> Abbildungsvorschrift an und stelle fest, dass das gleiche
> rauskommt.
>  
> Auserdem denke ich, dass du das ganze für zwei (im
> allgemeinen) verschiedene Vektoren zeigen musst, also
> [mm]f(v+w) = f(v) + f(w)[/mm] (was aber am Vorgehen eigentlich
> nichts ändert). Schau da noch mal in eurer Definition
> nach.

Oh ja... stimmt ja :-)

Also nochmal neu:

Ich muss prüfen, ob $f(v+w)=f(v)+f(w)$ gilt.

Auf $f(v+w)$ kann ich direkt die Abbildungsvorschrift anwenden:

Also: $f(v+w)=v+w=f(v)+f(w)$

Stimmt es jetzt?



> Abbildungen von $ [mm] \IR [/mm] $ nach $ [mm] \IR [/mm] $ können natürlich auch linear
> sein - man kann ja $ [mm] \IR [/mm] $ mit dem Vektorraum $ [mm] \IR^1 [/mm] $
> identifizieren und dann die Definition entsprechend anwenden.
> Natürlich könnte man hier eine lineare Abbildung auch definieren,
> ohne erst "künstlich" einen Vektorraum einzuführen. Allerdings sind
> lineare Abbildungen gerade die, die zur Vektorraumstruktur "passen":
> Auf einem Vektorraum gibt es die zwei Operationen Addition und
> skalare Multiplikation und die Anforderungen an eine lineare Funktion
> bedeuten ja gerade, dass sich die Funktion bezüglich dieser
> Operationen "vernünftig" verhält.

Hmm, so ganz verstehe ich das noch nicht.

Was meinst du z.B. mit dem "vernünftig verhalten"?

Hätte das denn irgendwelche Auswirkungen auf die beiden Vektorräume, wenn sich die Abbildung nicht "vernünftig" verhalten würde?



LG, Nadine

Bezug
                        
Bezug
Identität ist linear: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Sa 17.10.2009
Autor: pelzig


> Also nochmal neu:
>  
> Ich muss prüfen, ob [mm]f(v+w)=f(v)+f(w)[/mm] gilt. Auf [mm]f(v+w)[/mm]
> kann ich direkt die Abbildungsvorschrift anwenden: [mm]f(v+w)=v+w=f(v)+f(w)[/mm]

>

> Stimmt es jetzt?

Ja, jetzt stimmt es.

> Hmm, so ganz verstehe ich das noch nicht.
>  
> Was meinst du z.B. mit dem "vernünftig verhalten"?

Er meint, dass die Abbildungen linear sind. Zerbrich dir über das "vernünftig verhalten" besser nicht den Kopf, du wirst später erkennen welche Bedeutung lineare Abbildungen für Vektorräume haben. Beachte, dass die linearen Abbildungen von [mm] $\IR\to\IR$ [/mm] die Abbildungen der Form [mm] $x\mapsto a\cdot [/mm] x$ sind für ein [mm] $a\in\IR$. [/mm] Also nicht wie in der Schule [mm] $x\mapsto [/mm] ax+b$.

> Hätte das denn irgendwelche Auswirkungen auf die beiden
> Vektorräume, wenn sich die Abbildung nicht "vernünftig"
> verhalten würde?

Den Vektorräumen kann  doch ziemlich egal sein was irgendwelche Abbildungen zwischen ihnen für Unfug treiben :-)
Also ernsthaft: das ist keine besonders mathematische Frage.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]