www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Ich komm nicht weiter
Ich komm nicht weiter < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ich komm nicht weiter: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:20 Mi 02.11.2005
Autor: gymnozist

Hallo, ich habe keinen Plan, wie ich diese aufgabe zeigen soll.
man zeige für alle [mm] \mu \varepsilon [/mm] M° gilt:
[mm] \summe_{\nu \varepsilon M°} sigma_{\nu} (\mu) [/mm] =
[mm] \begin{cases} 2^{kardinalitaet x}, & \mbox{falls} \mu \mbox{ =0} \\ 0, & \mbox{ } \mbox{ sonst} \end{cases} [/mm]

wobei M°(X) die Menge aller einfachen Zählmaße auf X, d.h. aller Abb. [mm] \mu [/mm] :X--> {0,1} ist und sigma: M°--> {-1,+1}, mit [mm] sigma_{ \nu} (\mu) [/mm] = [mm] (-1)^{\nu \cap \mu} [/mm] ist, und X ist endlich.
  
ich habe mir schon ein bisschen was überlegt.
und zwar wenn [mm] \mu [/mm] =0 gilt, dann ist
[mm] \summe_{\nu \varepsilon M°} (-1)^{\nu \cap \mu} [/mm] ja gleich 1, da der Schnitt die leere Menge ist = kardinalität M° = [mm] 2^{kardinalitaet x}. [/mm]

Aber ich weiß nicht weiter. Wäre nett, wenn mir jemand helfen könnte.
Danke


        
Bezug
Ich komm nicht weiter: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:18 Do 03.11.2005
Autor: Stefan

Hallo!

Mir sagt der Ausdruck [mm] $\mu \cap \nu$ [/mm] für zwei Zählmaße [mm] $\mu$ [/mm] und [mm] $\nu$ [/mm] gerade nichts. Was versteht man darunter?

Liebe Grüße
Stefan

Bezug
                
Bezug
Ich komm nicht weiter: symmetrische Differenz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:19 Do 03.11.2005
Autor: gymnozist

Also, wenn ich das in der Vorlesung richtig verstanden habe bezeichnet der Schnitt von [mm] \mu [/mm] und [mm] \nu [/mm] die symmetrische Differenz, durch die das [mm] sigma_{nu} [/mm] definiert ist, das eine Abbildung in {0,1} ist. Es geht darum, ob das auftretende Ereignis stattfindet oder nicgt (habe ich wenigstens so in etwa verstanden).
So wie bei [mm] \mu [/mm] =0, dann ist der Schitt leer und es werden nur die einsen aufsummiert. Ist jetzt [mm] \mu [/mm] nicht gleich Null, so muss mann den Schnitt bilden, der dann als Exponent ünerder -1 steht.
Für mu =0 weiss ich wie es geht, das habe ich auch verstanden, aber der zweite Fall ist mir etwas zu hoch, da dann für sigma nur 1 und -1 rauskommen kann, aber wie zeigt man, dass sich das zu null summiert???
wäre nett, wenn mir jemand helfen könnte.
Danke

Bezug
                        
Bezug
Ich komm nicht weiter: Kapiere ich immer noch nicht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Do 03.11.2005
Autor: Stefan

Hallo!

Tut mir leid, ich kapiere es noch nicht. Was ist denn die symmetrische Differenz zweier Maße? (Ich kenne nur die symmetrische Differenz zweier Mengen.)

Kannst du mal bitte mit Hilfe des Formelsystems schön sauber die exakte Definition hier hereinstellen? Dann kann man auch helfen. :-) Danke!

Liebe Grüße
Stefan

Bezug
                                
Bezug
Ich komm nicht weiter: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:36 Do 03.11.2005
Autor: gymnozist

Also hier die korrekte definition, wie ich sie bekommen habe.
X idt eine endlich nicht leere menge.
M°°(X) ist die menge aller zählmaße auf X, also aller Abb [mm] \mu [/mm] : X--->  [mm] \IN_0 [/mm]
und M°(X) die Menge aller einfachen zählmaße auf X, also aler Abb [mm] \mu [/mm] : X --> {0,1}.
Für [mm] \nu \varepsilon [/mm] M° sei [mm] sigma_{\nu} [/mm] : M° ---> {-1,1} definiert durch sigma_ [mm] {\nu} [/mm] ( [mm] \mu) [/mm] = (-1)^ [mm] {\parallel \nu \cap \mu \parallel} [/mm]
Die normstriche sollen betragsstriche darstellen, so weit ich weiß meinte er damit die kardinalität.
So, dass ist die Def.
Hoffentlich verstehst du das besser als ich.
Danke für die Mühe.

Bezug
                                        
Bezug
Ich komm nicht weiter: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Do 03.11.2005
Autor: Stefan

Hallo!

Nein, tut mir leid, ich verstehe immer noch nicht, was mit [mm] $\mu \cap \nu$ [/mm] und insbesondere mit [mm] $\Vert \mu \cap \nu$ [/mm] gemeint ist. Und das hatte ich ja gefragt...

Vielleicht bin ich ja zu blöd dazu.

Die Fälligkeit ist eh abgelaufen; vielleicht kann ja jemand die Frage auf "Nur noch für Interessierte" stellen.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]