www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - \IZ [\wurzel{n}]
\IZ [\wurzel{n}] < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

\IZ [\wurzel{n}]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 So 11.10.2009
Autor: kleine_ente_nora

Die Aussage ist folgende: Betrachtet man den Integritätsbereich [mm] \IZ [\wurzel{n}] [/mm] = { [mm] a+b\wurzel{n} [/mm] | a,b [mm] \in \IZ [/mm] } für n [mm] \in \IZ, [/mm] n [mm] \not= [/mm] 0, n [mm] \not= [/mm] 1, n quadratfrei, dann lässt sich jedes Element aus [mm] \IZ [\wurzel{n}] [/mm] eindeutig in der Form [mm] a+b\wurzel{n} [/mm] mit a,b [mm] \in \IZ [/mm] darstellen.
Hierbei meint quadratfrei: Es existiert keine Primzahl p mit p² | n.
Ich weiß, dass es was mit dem Eisensteinkriterium bei einer Körpererweiterung vom Grad 2 zu tun hat, dass man die Elemente aus [mm] \IZ [\wurzel{n}] [/mm] so schreiben kann, aber kann mir das jemand nochmal genau erklären? Warum lassen sich alle Elemente so schreiben?

        
Bezug
\IZ [\wurzel{n}]: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 So 11.10.2009
Autor: felixf

Hallo!

> Die Aussage ist folgende: Betrachtet man den
> Integritätsbereich [mm]\IZ [\wurzel{n}][/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= { [mm]a+b\wurzel{n}[/mm] |

> a,b [mm]\in \IZ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} für n [mm]\in \IZ,[/mm] n [mm]\not=[/mm] 0, n [mm]\not=[/mm] 1, n

> quadratfrei, dann lässt sich jedes Element aus [mm]\IZ [\wurzel{n}][/mm]
> eindeutig in der Form [mm]a+b\wurzel{n}[/mm] mit a,b [mm]\in \IZ[/mm]
> darstellen.
>  Hierbei meint quadratfrei: Es existiert keine Primzahl p
> mit p² | n.
>
>  Ich weiß, dass es was mit dem Eisensteinkriterium bei
> einer Körpererweiterung vom Grad 2 zu tun hat, dass man
> die Elemente aus [mm]\IZ [\wurzel{n}][/mm] so schreiben kann, aber
> kann mir das jemand nochmal genau erklären? Warum lassen
> sich alle Elemente so schreiben?

Nun, das man jedes Element so schreiben kann folgt aus der Definition und aus [mm] $\sqrt{n}^2 [/mm] = n [mm] \in \IZ$. [/mm] Das die Darstellung eindeutig ist, dazu brauchst du tatsaechlich Eisenstein. Demnach ist naemlich das Polynom [mm] $X^2 [/mm] - n [mm] \in \IQ[x]$ [/mm] irreduzibel. Insbesondere sind also [mm] $\sqrt{n}$ [/mm] und 1 linear unabhaengig ueber [mm] $\IQ$: [/mm] andernfalls liesse sich eine Relation $a [mm] \sqrt{n} [/mm] + b = 0$ finden mit $a, b [mm] \in \IQ$ [/mm] nicht beide 0, und dann waer $a X + b [mm] \in \IQ[x]$ [/mm] ein Polynom vom Grad $< 2$ mit [mm] $\sqrt{n}$ [/mm] als Nullstelle.

Da [mm] $\sqrt{n}$ [/mm] und $1$ linear unabhaengig ueber [mm] $\IQ$ [/mm] sind, ist die Darstellung $a + b [mm] \sqrt{n}$ [/mm] mit $a, b [mm] \in \IQ$ [/mm] eindeutig, und also auch fuer $a, b [mm] \in \IZ$. [/mm]

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]