www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Hypergeometrische Verteilung
Hypergeometrische Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hypergeometrische Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Do 10.11.2011
Autor: eddiebingel

Aufgabe
Aus einer Menge von N Objekten, durchnummeriert mit den Zahlen 1,...,N, ziehen Sie rein zufällig und ohne Zurücklegen [mm] n\leN [/mm] Objekte.

a) Sei 1 [mm] \le [/mm] k [mm] \le [/mm] N. Mit welcher Wahrscheinlichkeit ist die größte gezogene Zahl gerade k?

b) Beweisen Sie mit Teil a) das sog. Gesetz der oberen Summation
[mm] \summe_{k=n}^{N}\vektor{k \\ n} [/mm] = [mm] \vektor{N+1 \\ n+1} [/mm]

Ich weiss, dass ich mit der Hypergeometrischen Verteilung an die Aufgabe haerangehen sollte nur hab ich Probleme die Parameter richtig zu wählen

N ist die Anzahl der Objekte
und n die Anzahl der Ziehungen, da alle gezogenen Objekte k [mm] \len [/mm] sein müssen um Erfolg zu haben, befinden sich gerade k Objekte in der Menge und n muss gleich k sein also würde gelten

P(X=k) = [mm] Hyp(k|N,k,n)=\bruch{\vektor{n \\ n}\vektor{N-n \\ n-n}}{\vektor{N \\ n}} [/mm]
[mm] =\bruch{1}{\vektor{N \\ n}} [/mm]

Das kommt wir etwas seltsam vor wäre gut wenn mir jemand sagt wo mein Denkfehler liegt oder stimmt das so?

lg eddie

        
Bezug
Hypergeometrische Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Do 10.11.2011
Autor: kamaleonti

Moin,
> Aus einer Menge von N Objekten, durchnummeriert mit den
> Zahlen 1,...,N, ziehen Sie rein zufällig und ohne
> Zurücklegen [mm]n\leN[/mm] Objekte.
>  
> a) Sei 1 [mm]\le[/mm] k [mm]\le[/mm] N. Mit welcher Wahrscheinlichkeit ist die größte gezogene Zahl gerade k?

>  
> b) Beweisen Sie mit Teil a) das sog. Gesetz der oberen
> Summation
>  [mm]\summe_{k=n}^{N}\vektor{k \\ n}[/mm] = [mm]\vektor{N+1 \\ n+1}[/mm]
>  Ich
> weiss, dass ich mit der Hypergeometrischen Verteilung an
> die Aufgabe haerangehen sollte nur hab ich Probleme die
> Parameter richtig zu wählen
>  
> N ist die Anzahl der Objekte
>  und n die Anzahl der Ziehungen, da alle gezogenen Objekte
> k [mm]\len[/mm] sein müssen um Erfolg zu haben,

Nein, es kann und soll genau ein gezogenes Objekt k sein (Ziehen ohne Zurücklegen)

> befinden sich gerade k Objekte in der Menge und n muss gleich k sein also würde gelten
>  
> P(X=k) = [mm]Hyp(k|N,k,n)=\bruch{\vektor{n \\ n}\vektor{N-n \\ n-n}}{\vektor{N \\ n}}[/mm] [mm]=\bruch{1}{\vektor{N \\ n}}[/mm]

Leider nein.


Ich würde so rangehen:
Die Zahl k kann an n unterschiedlichen Stellen gezogen werden. Die verbleibenden n-1 gezogenen Elemente sollen aus der Menge [mm] \{1,\ldots, k-1\} [/mm] ausgewählt werden (Reihenfolge relevant). Damit bekommst du die Anzahl aller möglichen Ziehungen, bei denen k das größte Element ist.
Die Gesamtanzahl an Ziehungen ist (N-n+1)!.

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]