www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Hypergeometrische Verteilung
Hypergeometrische Verteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hypergeometrische Verteilung: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:24 Mo 03.11.2008
Autor: original_tom

Aufgabe
Ein Skatspiel besteht aus 32 Karten, die sich zusammensetzen aus vier Farben (Karo, Herz,...) und jeweils As, König,...sieben. Jeder der drei Spieler erhält 10 Karten, im Skapt verbleiben 2 Karten. Man berechne folgende W.:

a) Jeder Spieler hat genau einen Buben
b) Es leigen 2 Buben im Skat
c) Mindestens ein Spieler hat genau 2 Buben
d) Genau ein Spieler hat genau 2 Buben

Hallo,

a) hab ich mit der Hypergeometrischen Verteilung gelöst, in dem ich für das Austeilen der ersten 10 Karten für Spieler eins die Wahrscheinlichkeit ausgerechnet habe und für die restlichen Karten für Spieler 2 usw... diese Ergebnisse multipliziert ergeben die richtig W.

allerdings funktioniert das so nicht mehr bei den anderen Punkten, da hätte ich für b) z.b. angenommen das der erste Spieler 2 buben bekommt, die anderen beiden keine und der skat 2 buben hat. Aber das funktioniert so nicht, irgendwo hab ich einen Denkfehler und ich hoffe, dass mir jemand hier weiterhelfen kann.

lg tom

        
Bezug
Hypergeometrische Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Mo 03.11.2008
Autor: luis52

Moin original_tom,

der Multinomialkoeffizient

[mm] $\binom{n}{n_1, n_2,\dots , n_k}=\frac{n!}{n_1!\times n_2!\times\dots\times n_k!}$ [/mm]

gibt an, wieviel Moeglichkeiten es gibt, n Dinge auf k Kaesten zu
verteilen mit jeweils einem Fassungsvermoegen [mm] $n_j$, $n_1+n_2+\dots+ n_k=n$. [/mm]

Es gibt demnach  [mm] $\binom{32}{10,10,10,2}$ [/mm] Moeglichkeiten, die Karten zu verteilen.

Schauen wir uns einmal d) an: Es gibt [mm] $\binom{4}{2}=6$ [/mm] Moeglichkeiten,
zwei Buben in den Skat zu legen.
Die restlichen zwei koennen an jeden der 3 Spieler gegeben werden
  Fuer jede der Zuteilungen von zwei Buben auf Skat und zwei
Buben an einen Spieler
gibt es noch [mm] $\binom{28}{10,10,8,0}$ [/mm] Moeglichkeiten, die restlichen
Karten auf den Skat und die drei Spieler zu verteilen.  Die gesuchte Wsk
ist folglich

[mm] $\dfrac{6\times3\times\dbinom{28}{10,10,8,0}}{\dbinom{32}{10,10,10,2}}=\frac{27}{7192}=0.00375417$ [/mm]





vg Luis              

Bezug
                
Bezug
Hypergeometrische Verteilung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:01 Mo 03.11.2008
Autor: original_tom

In unseren Lösungen steht allerdings für das beispiel d) eine Wahrscheinlichkeit von 0,529.
Vl hat jemand noch einen andere Lösungsweg parat, der zu diesem Ergebnis führt.

mfg tom

Bezug
                        
Bezug
Hypergeometrische Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Mo 03.11.2008
Autor: luis52


> In unseren Lösungen steht allerdings für das beispiel d)
> eine Wahrscheinlichkeit von 0,529.

Das *kann* nicht sein. Man uerberlegt sich leicht, dass die Wsk dafuer,
2 Buben im Skat zu finden, [mm] $6/\binom{32}{2}=0.012$ [/mm] ist. Wenn genau ein Spieler genau zwei Buben hat, so mussen 2 Buben im Skat liegen. Mithin ist die gesuchte Wsk $<0.012$.

Hau das Loesungsheft weg ... ;-(

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]