www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Hyperebene
Hyperebene < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Sa 12.05.2007
Autor: GorkyPark

Hallo zusammen,

ich beweise gerade eine Proposition und habe dies auch geschafft. Nur habe ich dabei eine alte Weisheit aus der Schule gebraucht, die ich irgendwie nicht beweisen kann. Ich sehe den Wald vor lauten Bäumen nicht mehr.

Ich habe folgendes verwendet. Wenn man eine Hyberebene hat, die gegeben ist durch:

[mm] H:={(x_{1},...,x_{n}) \in \IR^{n} : a_{1}*x_{1} + ... + a_{n}*x_{n}= b}, [/mm]

mit b in [mm] \IR. [/mm]

AUs der SChule weiss ich  noch, dass der Vektor [mm] (a_{1},...,a_{n})^{T} [/mm] der Normalenvektor zu dieser Hyperebene ist.

Kann mir das jemand schnell herleiten. Es müsste doch einfach sein. Ich glaube es geht mit der Orthogonalität und dem Skalarprodukt.

Vielen Dank im Voraus,

Eur GP

        
Bezug
Hyperebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Sa 12.05.2007
Autor: felixf

Hallo GP!

> ich beweise gerade eine Proposition und habe dies auch
> geschafft. Nur habe ich dabei eine alte Weisheit aus der
> Schule gebraucht, die ich irgendwie nicht beweisen kann.
> Ich sehe den Wald vor lauten Bäumen nicht mehr.
>  
> Ich habe folgendes verwendet. Wenn man eine Hyberebene hat,
> die gegeben ist durch:
>  
> [mm]H:=\{(x_{1},...,x_{n}) \in \IR^{n} : a_{1}*x_{1} + ... + a_{n}*x_{n}= b\},[/mm]
>  
> mit b in [mm]\IR.[/mm]
>  
> AUs der SChule weiss ich  noch, dass der Vektor
> [mm](a_{1},...,a_{n})^{T}[/mm] der Normalenvektor zu dieser
> Hyperebene ist.
>  
> Kann mir das jemand schnell herleiten. Es müsste doch
> einfach sein. Ich glaube es geht mit der Orthogonalität und
> dem Skalarprodukt.

Genau. Dazu nimmst du zwei beliebige Punkte $x, y [mm] \in [/mm] H$ und zeigst, dass $a$ senkrecht auf $x - y$ steht. Sei $x = [mm] (x_1, \dots, x_n)^T$ [/mm] und $y = [mm] (y_1, \dots, y_n)^T$. [/mm] Wegen $x, y [mm] \in [/mm] H$ ist [mm] $\sum_{i=1}^n a_i x_i [/mm] = b = [mm] \sum_{i=1}^n a_i y_i$, [/mm] also [mm] $\sum_{i=1}^n a_i (x_i [/mm] - [mm] y_i) [/mm] = 0$. Aber nun ist gerade [mm] $\langle [/mm] a, x - y [mm] \rangle [/mm] = [mm] \sum_{i=1}^n a_i (x_i [/mm] - [mm] y_i)$, [/mm] womit $a$ orthogonal auf $x - y$ steht.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]