www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Hyperbel
Hyperbel < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperbel: Übungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 17:24 Mi 08.07.2015
Autor: goldilein

Aufgabe 1
Bringen Sie die Gleichung der Hyperbel
xy= 1 in die Normalform, d.h., finden Sie eine Bewegung(S;v)mit S element O(2)und v element [mm] R^2 [/mm] und Konstanten a; b, so dass für(x';y') =S(x; y) +v gilt [mm] x'^2/a^2 [/mm] - [mm] y'^2/b^2=1. [/mm]

Aufgabe 2
Bringen Sie die Gleichung der Hyperbel
xy= 1 in die Normalform, d.h., finden Sie eine Bewegung(S;v)mit S element O(2)und v element [mm] R^2 [/mm] und Konstanten a; b, so dass für(x';y') =S(x; y) +v gilt [mm] x'^2/a^2 [/mm] - [mm] y'^2/b^2=1. [/mm]


Kann mir jemand dabei helfen? :)
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=209597&start=0&lps=1534892#v1534892
http://www.onlinemathe.de/forum/Hyperbel-77]

        
Bezug
Hyperbel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Fr 10.07.2015
Autor: hippias

[willkommenvh]

Der Standardweg zur Loesung des Problems waere, dass Du Ansatz $S= [mm] \pmat{\alpha&\beta\\\gamma&\delta}$ [/mm] machst so, dass [mm] $S\in [/mm] O(2)$ gilt, und [mm] $v=(v_{1},v_{2})$. [/mm] Dann ist $x'= [mm] \alpha [/mm] x+ [mm] \beta y+v_{1}$ [/mm] und analog fuer $y'$. Diese Terme setzt Du in [mm] $\frac{(x')^{2}}{a^{2}}-\frac{(y')^{2}}{b^{2}}= [/mm] 1$ ein, nutzt aus, dass $xy=1$ gilt, und versuchst daraus die Unbekannten abzulesen.

Nun laesst sich Dein Problem aber einfacher mit Hilfe der sog. 3. binomischen Formel loesen: denn [mm] $\frac{(x')^{2}}{a^{2}}-\frac{(y')^{2}}{b^{2}}$ [/mm] ist die Differenz zweier Quadrate, welches man als Produkt darstellen moechte. Wendest Du die bin. Formel an, so kannst Du den ersten Faktor $=x$ setzen und den zweiten $=y$. Daraus lassen sich dann ebenfalls die Unbekannten ablesen.

Ich hoffe, das hilft Dir.

Uebrigens: Wir erwarten hier Vorarbeit und Ideen Deinerseits.  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]