www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Hospital Regeln
Hospital Regeln < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hospital Regeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:29 Do 22.10.2009
Autor: Igor1

Hallo,

ich sitze gerade vor einer Aufgabe , bei der man als Zwischenschritt eine
Grenwertberechnung
[mm] lim_{n} \bruch{\bruch{b}{2n}}{sin (\bruch{b}{2n})} [/mm] durchführen soll.
Ich weiß, dass mein Kommiliton mit Hilfe von Regel von Hospital 1 als Ergebnis hatte (bin mir nicht ganz sicher).
Ich kann momentan diesen Grenzwert nicht berechnen. Ich muss aber morgen früh diese Aufgabe abgeben.
Deshalb bitte ich um eine schnelle Antwort.

Danke und Gruss !

Igor

        
Bezug
Hospital Regeln: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Do 22.10.2009
Autor: Steffi21

Hallo, bilde die Ableitung vom Zähler und die Ableitung vom Nenner, betrachte dann erneut den Grenzwert, Steffi

Bezug
                
Bezug
Hospital Regeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Do 22.10.2009
Autor: Igor1

Hi Steffi21,

Danke für die schnelle Antwort !

Ja, beim ersten Betrachten ist mir halt nicht aufgefallen, dass man bei dem Zähler und dem Nenner (nach dem Ableiten) etwas kürzen kann.
Jetzt ist klar, dass der Grenzwert 1 ist.

Ich habe eine Frage noch so am Rande:
Sind die Bedingungen fürs Nutzen von Hospital-Regeln erfüllt ?


Nochmal Danke und Gruss !

Igor





Bezug
                        
Bezug
Hospital Regeln: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Do 22.10.2009
Autor: Herby

Hallo Igor,

der Grenzwert ist richtig und die Bedingungen sind erfüllt, denn


[mm] \limes_{n\rightarrow\infty}\bruch{\bruch{b}{2n}}{\sin\left(\bruch{b}{2n}\right)}=\bruch{0}{0} [/mm]



Lg
Herby

Bezug
        
Bezug
Hospital Regeln: Antwort
Status: (Antwort) fertig Status 
Datum: 23:06 Do 22.10.2009
Autor: leduart

Hallo
schreib statt b/2n x dann n gegen [mm] \infty [/mm] ist x gegen 0
wenn du LHopital kennst wend ihn dann an.
wenn nicht, ersetze sinx durch sin(0)+(sin(x))'_0*x
wegen [mm] |sinx-sin0-(sinx)'_0*(x-0)|<\epsilon [/mm] fur [mm] |x|<\delta [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]