www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Homomorphismus und Isomorphism
Homomorphismus und Isomorphism < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphismus und Isomorphism: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 13:52 So 18.11.2012
Autor: Z91

Aufgabe
Aufgabe 1

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, ich brauche dringend Hilfe

Gegeben ist eine Gruppe ( G, °). Fur ein Element  a  [mm] \in [/mm] G wird eine Abbildung durch
                             Ta : G -> G, x |-> a*x*a^-1
de niert.

a) Zeigen Sie, dass Ta ein Gruppenhomomorphismus ist.
b) Uberprüfen Sie für  a, b  [mm] \in [/mm]  G, dass Ta ° T b = Ta*b
c) Zeigen Sie, dass Ta ein Isomorphismus ist.
d) Zeigen Sie, dass die Menge T := {Ta | a  [mm] \in [/mm]  G} eine Untergruppe von (Aut(G),° ) ist.

Ich habe keine Idee wie ich die Aufgabe lösen soll.

Vielen Dank schon mal .

        
Bezug
Homomorphismus und Isomorphism: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 So 18.11.2012
Autor: Diophant

Hallo und

[willkommenvh]

> Aufgabe 1
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo, ich brauche dringend Hilfe
>
> Gegeben ist eine Gruppe ( G, °). Fur ein Element  a [mm] \in [/mm]
> G wird eine Abbildung durch
> Ta : G -> G, x |-> a*x*a^-1
> de niert.
>
> a) Zeigen Sie, dass Ta ein Gruppenhomomorphismus ist.

Weise die Homomorphiebdingungen nach.

> b) Uberprüfen Sie für  a, b [mm] \in [/mm] G, dass Ta ° T b
> = Ta*b

Setze so an:

[mm]{T_a}\circ{T_b}=abxb^{-1}a^{-1}[/mm]

und forme den hinteren Teil

[mm] b^{-1}a^{-1} [/mm]

geeignet um (da würde ich jetzt einiges wetten, dass diese Umformung davor schon irgendwo als Übungsaufgabe drankam).

> c) Zeigen Sie, dass Ta ein Isomorphismus ist.

Na ja, da muss man 'einfach' zeigen, dass [mm] T_a [/mm] bijektiv ist. Die Injektivität ist einfach, bei der Surjektivität muss man ein wenig trickreich argumentieren.

> d) Zeigen Sie, dass die Menge T := Ta | a [mm] \in [/mm] G eine
> Untergruppe von (Aut(G),° ) ist.

Nimm die Menge sämtlicher Automorphismen auf G und wende die Untergruppenkriterien an.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]