www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Homomorphismus
Homomorphismus < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphismus: Gruppenhomom.- Trivialität?
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 25.03.2008
Autor: Riesenradfahrrad

Ich lerne gerade ein Begriffe der Linearen Algebra und mir ist dabei der Homomorphismus untergekommen. Mir ist im Prinzip klar, das dieser ein "Werkzeug" zu Vergleich von Srukturen zwischen z.B. zwei Gruppen sein soll.
Jedoch komme ich beim lesen der Definition ein wenig ins Schmunzeln (vielleicht aus Blödheit..), denn:

" Seien [mm](G_1,\circ_1)[/mm] und [mm](G_2,\circ_2)[/mm] Gruppen und [mm]f:G_1\rightarrow G_2[/mm] eine Abbildung. [mm]f[/mm] heißt Homomorphismus, falls gilt
[mm]f(a\circ_1 b)=f(a)\circ_2 f(b)[/mm]

[mm](G_1,\circ_1)[/mm] und [mm](G_2,\circ_2)[/mm] heißen homomorph, wenn es solch einen Homomorphismus gibt.

Aber!! Man kann doch immer eine Abbildung [mm]f[/mm] nehmen, die alle Elemente von [mm]G_1[/mm] auf das neutrale Element von [mm]G_2[/mm] abbildet. Und das ist trivial.


Was ist dann das "Tolle" an der Eigenschaft Homomorphie?


Vielen Dank im Voraus,
Lorenz

        
Bezug
Homomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Di 25.03.2008
Autor: pelzig


> Aber!! Man kann doch immer eine Abbildung [mm]f[/mm] nehmen, die
> alle Elemente von [mm]G_1[/mm] auf das neutrale Element von [mm]G_2[/mm]
> abbildet. Und das ist trivial.

Richtig, das ist eben der "triviale Homomorphismus".

> Was ist dann das "Tolle" an der Eigenschaft Homomorphie?

Nix. Wahrscheinlich wurde der Begriff in deinem Buch (oder welche Quelle auch immer du verwendest) nur der Vollständigkeit halber eingeführt (es gibt auch kein Symbol dafür), da diese Begriffsbildung ja analog zu [mm] "Isomorphismus"$\to$"Isomorphie" [/mm] ist, und Isomorphie ist nun wirklich eine sehr bedeutende Eigenschaft.

Bezug
                
Bezug
Homomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Di 25.03.2008
Autor: Riesenradfahrrad

Hallo pelzig,

herzlichen Dank für die schnelle Antwort!
Aber trotzdem schon komisch, dass man für so einen uninteressanten Verhalt einen Begriff prägt...

Greez,
Lorenz

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]