www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Homogenes GLS Lösung
Homogenes GLS Lösung < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homogenes GLS Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 Mi 02.11.2011
Autor: Summmsel

Aufgabe
Zeigen Sie, dass das homogene lineare Gleichungssystem
[mm] a_{11}x_{1} [/mm] + [mm] a_{12}x_{2} [/mm] = 0
[mm] a_{21}x_{1} [/mm] + [mm] a{22}x_{2} [/mm] = 0
genau dann eine nicht-triviale Lösung hat, wenn [mm] a_{11}a_{22} [/mm] = [mm] a_{12}a_{21} [/mm] gilt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Moin Leute,

ich wüsste gerne wass passiert, wenn [mm] a_{11}a_{22} [/mm] = [mm] a_{12}a_{21}, [/mm] denn momentan kann ich mir nichts darunter vorstellen, was das für die Lösungsmenge bedeutet. Ich kann mich noch überhaupt nicht in die Gestalt von Matrizen hineindenken.

Ich hoffe mir kann jemand behilflich sein.

mfg

        
Bezug
Homogenes GLS Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Mi 02.11.2011
Autor: abakus


> Zeigen Sie, dass das homogene lineare Gleichungssystem
>  [mm]a_{11}x_{1}[/mm] + [mm]a_{12}x_{2}[/mm] = 0
>  [mm]a_{21}x_{1}[/mm] + [mm]a{22}x_{2}[/mm] = 0
>  genau dann eine nicht-triviale Lösung hat, wenn
> [mm]a_{11}a_{22}[/mm] = [mm]a_{12}a_{21}[/mm] gilt.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Moin Leute,
>  
> ich wüsste gerne wass passiert, wenn [mm]a_{11}a_{22}[/mm] =
> [mm]a_{12}a_{21},[/mm] denn momentan kann ich mir nichts darunter
> vorstellen, was das für die Lösungsmenge bedeutet. Ich
> kann mich noch überhaupt nicht in die Gestalt von Matrizen
> hineindenken.

Musst du auch nicht.
Die Gleichung  [mm]a_{11}x_{1}[/mm] + [mm]a_{12}x_{2}[/mm] = 0 kann auch geschrieben werden als
[mm]a_{11}x[/mm] + [mm]a_{12}y[/mm] = 0 (ich mag diese Darstellung lieber) oder -falls  [mm] a_{12}\ne [/mm] 0- als
[mm] y=\bruch{-a_{11}}{a_{12}}x. [/mm]
Diese Gleichung beschreibt im Koordinatensystem eine Ursprungsgerade.
Die zweite Gleichung beschreibt -falls  [mm] a_{22}\ne [/mm] 0- die Gerade [mm] y=\bruch{-a_{21}}{a_{22}}x. [/mm]
Auch das ist eine Ursprungsgerade.
Zwei Ursprungsgeraden schneiden sich im Punkt (0|0); also ist x=0, y=0 eine (triviale) Lösung des Gleichungssystems. Wenn es noch eine nichttriviale Lösung geben soll, müssen die beiden Geraden mindestens noch einen gemeinsamen Punkt außerhalb des Ursprungs haben. Das klappt aber nur, wenn auch die Anstiege [mm] \bruch{-a_{11}}{a_{12}} [/mm] und [mm] \bruch{-a_{21}}{a_{22}} [/mm] identisch sind.
Die Gleichheit dieser beiden Anstiege lässt sich zu  [mm]a_{11}a_{22}[/mm] = [mm]a_{12}a_{21}[/mm] umformen.

Ich habe jetzt mal nur in eine Richtung argumentiert und auch noch nicht den Fall  [mm] a_{12}= [/mm] 0 bzw. [mm] a_{22}= [/mm] 0 betrachtet.

Gruß Abakus


>  
> Ich hoffe mir kann jemand behilflich sein.
>  
> mfg  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]