www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Homöomorphismus Diffeo usw
Homöomorphismus Diffeo usw < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homöomorphismus Diffeo usw: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:27 Mo 01.04.2013
Autor: xtraxtra

Hallo.
Ich hab ein paar Verständnisfragen, da ich mit den Definitionen in unserem Skript und auch im Internet nicht wirklich klar komme.
Was sind Homöomorphismen, Diffeomorphismen, Untermanigfaltigkeiten und Karten und wie hängen diese zusammen.

Was ich glaube zu wissen: Homöomorphismus: Ist eine Abbildung, bei der sie selbst und auch die Umkehrabbildung stetig ist. Außerdem müssen beide bijektiv sein.
Diffeomorphismus: Gleiche Eigenschaften wie Homöo, nur dass hier zusätzlich noch Differenzierbarkeit verlangt wird für Abbildung und Umkehrabbildung.
Untermanigfaltigkeit: Ist eine Untermanigfaltigkeit ein Diffemorphismus, bzw welche Eigenschaften treffen hier zu?
Karte: Eine Karte ist ein Homöomorphismus. Ist sie auch eine Untermanigfaltigkeit?

Wäre cool, wenn mir jemand die Zusammenhänge dieser 4 Begriffe kurz erklären könnte.

        
Bezug
Homöomorphismus Diffeo usw: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 Di 02.04.2013
Autor: meili

Hallo,

> Hallo.
> Ich hab ein paar Verständnisfragen, da ich mit den
> Definitionen in unserem Skript und auch im Internet nicht
> wirklich klar komme.
>  Was sind Homöomorphismen, Diffeomorphismen,
> Untermanigfaltigkeiten und Karten und wie hängen diese
> zusammen.
>  
> Was ich glaube zu wissen: Homöomorphismus: Ist eine
> Abbildung, bei der sie selbst und auch die Umkehrabbildung
> stetig ist. Außerdem müssen beide bijektiv sein.

[ok]

> Diffeomorphismus: Gleiche Eigenschaften wie Homöo, nur
> dass hier zusätzlich noch Differenzierbarkeit verlangt
> wird für Abbildung und Umkehrabbildung.

[ok]

>  Untermanigfaltigkeit: Ist eine Untermanigfaltigkeit ein
> Diffemorphismus, bzw welche Eigenschaften treffen hier zu?

Eine Untermannigfaltigkeit ist eine Teilmenge einer Mannigfaltigkeit.
Diese Teilmenge muss ausserdem noch folgende Eigenschaft erfüllen:
Eine Teilmenge N einer n-dimensionalen Mannigfaltigkeit M ist genau dann
eine k-dimensionale eingebettete Untermannigfaltigkeit, wenn für jeden
Punkt p [mm] \in [/mm] N eine Karte [mm] (\varphi,U) [/mm] von M existiert, so dass die Gleichung

   $ [mm] \varphi(N\cap [/mm] U) = [mm] (\mathbb{R}^k \times [/mm] 0) [mm] \cap \varphi(U)$ [/mm]

erfüllt ist. Das Zeichen $0 [mm] \in \IR^{n-k}$ [/mm] bezeichnet hier den (n-k)-Tupel
(0,...,0).

Jede eingebettete Untermannigfaltigkeit ist mit den gerade
angegebenen Karten und der induzierten Unterraumtopologie wieder eine
Mannigfaltigkeit.

>  Karte: Eine Karte ist ein Homöomorphismus. Ist sie auch
> eine Untermanigfaltigkeit?

[ok]
Eine Karte ist ein Spezialfall einer Untermannigfaltigkeit.

Gewisse Hommöomorphismen auch noch Karten zu nennen, kommt von
dem Begriff des "Atlas" einer Mannigfaltigkeit.

>  
> Wäre cool, wenn mir jemand die Zusammenhänge dieser 4
> Begriffe kurz erklären könnte.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]