www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Holomorphie bei Log(z)
Holomorphie bei Log(z) < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Holomorphie bei Log(z): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 Sa 27.10.2007
Autor: Braunstein

Hallo,
holomorph ist f(z) dann, wenn
- Cauchy-Riemann-Kriterium erfüllt ist
- f(z) in Form einer Potenzreihe darstellbar ist
- das Gebiet zusammenhängend ist.

Nun geht's aber um Log(z). Es heißt ja, dass dieser im Punkt 0 nicht definiert ist, also Log(0+0i)=ndef. Hingegen ist Log(-1+0i) ja definiert, nämlich mit [mm] \pi*i. [/mm]

Warum heißt es dann, dass Log(z) auf [mm] \IR_{0}^{-} [/mm] holomorph ist??? Ich versteh das nicht. Was ist mit Log(z) auf [mm] \IC\backslash\{0\} [/mm] ?

Nun, ich weiß folgendes: Log(z) kann auf [mm] \IC [/mm] ja nicht holomorph sein, da Log(0) nicht definiert, somit ist der Bereich nicht mehr zusammenhängend! Wenn ich aber Log(z) auf [mm] \IC\backslash\{0\} [/mm] betrachte, dann hab ich ja sogesehen ein zusammenhängendes Gebiet, oder etwa nicht?

Ich hoffe, jemand kann mir da weiter helfen.

Gruß, h.

        
Bezug
Holomorphie bei Log(z): Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Sa 27.10.2007
Autor: leduart

Hallo
log(-1) hat folgende Werte:   [mm] \pi*i,3\pi*i;...(2n+1)*\pi*i; n\in [/mm] N
Gruss leduart

Bezug
                
Bezug
Holomorphie bei Log(z): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Sa 27.10.2007
Autor: Braunstein

Ah, also liegt's an der Stetigkeit!
Vielen Dank für deine Antwort.

Gruß, h.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]