www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Hoch- und Tiefpunkte
Hoch- und Tiefpunkte < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hoch- und Tiefpunkte: Erklärung
Status: (Frage) beantwortet Status 
Datum: 18:00 So 06.04.2008
Autor: DerDon

Hallo zusammen!

Ich hätte eine, wahrscheinlich recht einfache, Frage: Woran erkennt man, ob es sich bei den Extremwerten um einen Hochpunkt oder einen Tiefpunkt handelt.

Ich weiß zwar, wie man sie erhält, aber nicht, um welchen der beiden Fälle es sich handelt.

Ich hoffe ihr könnt mir weiterhelfen!

        
Bezug
Hoch- und Tiefpunkte: hinreichendes Kriterium
Status: (Antwort) fertig Status 
Datum: 18:05 So 06.04.2008
Autor: Loddar

Hallo DerDon!


Man setzt die x-Werte der möglichen Extremstellen in die 2. Ableitung ein. Ist dieser Wert $< \ 0$ , handelt es sich um ein Maximum.
Ist [mm] $f''(x_e) [/mm] \ > \ 0$ , liegt ein Minimum vor. Dieses Kriterium nennt man hinreichendes Kriterium.


Gruß
Loddar


Bezug
                
Bezug
Hoch- und Tiefpunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 So 06.04.2008
Autor: DerDon

Ah ok!

Also wenn ich z.B. bei f(x) = 0 die Extrempunkte 4, 5 und 6 habe, dann muss ich 4 in f'' einsetzen. Ist dieser Wert dann >0 ist es bei 4 ein Tiefpunkt.

Mit 5 und 6 mache ich das dann genauso und je nachdem was rauskommt, kann ich sehen, ob es ein HOP oder ein TIP ist, richtig?

Bezug
                        
Bezug
Hoch- und Tiefpunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 So 06.04.2008
Autor: Tyskie84

Hallo!

> Ah ok!
>  
> Also wenn ich z.B. bei f(x) = 0 die Extrempunkte 4, 5 und 6
> habe, dann muss ich 4 in f'' einsetzen. Ist dieser Wert
> dann >0 ist es bei 4 ein Tiefpunkt.
>

Nicht ganz wenn du bei f'(x)=0 die Kandidaten 4 , 5 oder 6 erhälst dann musst du diese in f''(x) einsetzen.
Also zb f''(4) kommst nun ein positiver Wert heraus also f''(4)>0 dann haben wir einen Tiefpunkt. Ist dagegen f''(4)<0 dann haben wir einen Hochpunkt.

> Mit 5 und 6 mache ich das dann genauso und je nachdem was
> rauskommt, kann ich sehen, ob es ein HOP oder ein TIP ist,
> richtig?

Ja mit den anderen Kandidaten machst du das genau so.

[hut] Gruß

Bezug
                                
Bezug
Hoch- und Tiefpunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 So 06.04.2008
Autor: DerDon

Ah natürlich die von f'(x), nicht von f(x)!
Danke auch an die andere Antwort, aber die dritte Ableitung haben wir noch nicht durchgenommen, trotzdem vielen Dank auch für Deine Hilfe.

"Leider" habe ich noch eine Frage, ich stelle sie jetzt einfach mal an dieser Stelle. Oft wird auch noch das Verhalten im Unendlichen gefragt, wo unser Lehrer immer [mm] \limes_{n\rightarrow\infty} [/mm] oder die negative Variante davon schreibt. Wie genau komme ich denn auf das Verhalten im Unendlichen?

Bezug
                                        
Bezug
Hoch- und Tiefpunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 So 06.04.2008
Autor: Tyskie84

Hallo!

Das ist im Prinzip nicht so schwer: Du musst halt schauen was mit der Funktion passiert wenn immer größer werdene Zahlen eingesetzt werden wenn x [mm] \rightarrow \infty [/mm] geht.

Schaue dir folgende Seiten an:

[]Hier
[]hier und []hier

[hut] Gruß

Bezug
                                                
Bezug
Hoch- und Tiefpunkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:15 So 06.04.2008
Autor: DerDon

Ich danke recht herzlich.

Bezug
        
Bezug
Hoch- und Tiefpunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 So 06.04.2008
Autor: argl

Erhältst du für die zweite Ableitung für eine der Nullstellen von $f'(x)$ den Wert Null, so musst du die dritte Ableitung mit dem x-Wert überprüfen. Ist die dritte Ableitung ungleich 0, so liegt ein Sattelpunkt vor.

Ist die dritte Ableitung auch Null, so musst du so lange ableiten, bis du eine Ableitung für den x-Wert erhältst, die ungleich Null ist. Ist dies eine ungerade Ableitung (fünfte, siebente, ..., Ableitung) so liegt ein Sattelpunkt vor. Ist diese Ableitung eine gerade Ableitung (sechste, achte, ..., Ableitung) und du erhältst einen Funktionswert $y<0$ so liegt ein Hochpunkt vor, ist der Funktionswert der geraden Ableitung $y>0$ so liegt an der Stelle ein Tiefpunkt vor.

Um die y-Koordinate von Hoch-/Tief-/Sattelpunkten zu ermitteln setzt du
einfach die ermittelten Koordinaten der Nullstellen der ersten Ableitung in die Ausgangsfunktion ein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]