Hilfestellung bei einem Beweis < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:19 Do 04.07.2019 | Autor: | Olli1968 |
Aufgabe | Seien [mm]\alpha , \beta \in Hom_{K}(K^{5},K^{3})[/mm], [mm]B_{1}[/mm] eine Basis von[mm]K^{5}[/mm], [mm]B_{2}[/mm] eine Basis von[mm]K^{3}[/mm]. Gelte weiter [mm] rg(_{B_{2}}(\alpha(v))_{B_{1}})=rg(_{B_{2}}(\beta(v))_{B_{1}})=2[/mm].
Zeigen Sie, dass es ein [mm]v\in K^{5}\backslash \{0_{K^{5}}\}[/mm] gibt mit [mm]\alpha(v)=\beta(v)=0_{K^{3}}[/mm]. |
Hallo Mathefreunde,
Erklärungen: [mm]K[/mm] ist ein Körper, [mm]rg(_{B_{2}}(\alpha(v))_{B_{1}})[/mm] ist der Rang der Darstellungsmatrix von [mm]\alpha[/mm] bezgl. [mm]B_{1}[/mm] und [mm]B_{2}[/mm].
Somit gilt für die Darstellungsmatrizen [mm]_{B_{2}}(\alpha(v))_{B_{1}},_{B_{2}}(\beta(v))_{B_{1}} \in Mat_{K}(3,5)[/mm].
Ich habe leider keine Idee, wie ich überhaupt Anfangen soll.
Kann mir jemand mit einer ersten Idee helfen? Danke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:58 Do 04.07.2019 | Autor: | fred97 |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Aus $ rg(_{B_{2}}(\alpha(v))_{B_{1}})=rg(_{B_{2}(\beta(v))_{B_{1}})=2 $ folgt zunächst, dass
$ \dim \alpha(K^5)= \dim \beta(K^5)=2$ ist.
Mit dem Dimensionssatz folgt
$5= \dim (K^5)= \dim \alpha(K^5) + \dim (ker( \alpha))=2+ \dim (ker( \alpha))$,
also $ \dim (ker( \alpha))=3.$
Genauso: $ \dim (ker( \beta))=3.$
Nun nehmen wir an, es gäbe kein $ v\in K^{5}\backslash \{0_{K^{5}}\} $ mit $ \alpha(v)=\beta(v)=0_{K^{3}} $. Das würde bedeuten:
$ker( \alpha) \cap ker( \beta)= \{0_{K^{5}}\}$.
Bestimme nun Du die Dimension von $ker( \alpha) \oplus ker( \beta)$
Siehst Du einen Widerspruch ?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:00 Do 04.07.2019 | Autor: | Olli1968 |
Danke Fred, dass Du so schnell geantwortet hast.
Jetzt wo du es geschrieben hast fällt mir wieder ein, dass wir in der Vorlesung einen Satz hatten: [mm] rg(_{B_{2}}(\alpha)_{B_{1}}) = dim_{K} Im(\alpha) [/mm].
Es gilt doch: [mm]dim_{K}(Ker(\alpha) + Ker(\beta))= dim_{K}(Ker(\alpha))+dim_{K}(Ker(\beta))-dim_{K}(Ker(\alpha) \cap Ker(\beta)) [/mm]
mit [mm]dim_{K}(Ker(\alpha) \cap Ker(\beta))=0[/mm], da [mm]Ker(\alpha) \cap Ker(\beta)=\{0_{K^{5}}\}[/mm]
Also gilt doch: [mm]dim_{K}(Ker(\alpha) + Ker(\beta))= dim_{K}(Ker(\alpha))+dim_{K}(Ker(\beta))[/mm]
Bin ich auf der richtigen Spur??
Gruß Olli
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:39 Do 04.07.2019 | Autor: | fred97 |
> Danke Fred, dass Du so schnell geantwortet hast.
>
> Jetzt wo du es geschrieben hast fällt mir wieder ein, dass
> wir in der Vorlesung einen Satz hatten:
> [mm]rg(_{B_{2}}(\alpha)_{B_{1}}) = dim_{K} Im(\alpha) [/mm].
>
> Es gilt doch: [mm]dim_{K}(Ker(\alpha) + Ker(\beta))= dim_{K}(Ker(\alpha))+dim_{K}(Ker(\beta))-dim_{K}(Ker(\alpha) \cap Ker(\beta))[/mm]
>
> mit [mm]dim_{K}(Ker(\alpha) \cap Ker(\beta))=0[/mm], da [mm]Ker(\alpha) \cap Ker(\beta)=\{0_{K^{5}}\}[/mm]
>
> Also gilt doch: [mm]dim_{K}(Ker(\alpha) + Ker(\beta))= dim_{K}(Ker(\alpha))+dim_{K}(Ker(\beta))[/mm]
>
> Bin ich auf der richtigen Spur??
Ja, schon, aber Du scheinst die Spur nicht zu sehen !
Wie groß ist denn nun
[mm] dim_{K}(Ker(\alpha) [/mm] + [mm] Ker(\beta)) [/mm] ?
Wenn Du das hast, so hast Du sofort einen Widerspruch, denn [mm] Ker(\alpha) [/mm] + [mm] Ker(\beta) [/mm] ist ein Unterraum eines 5 -dimensionalen Vektorraumes.
>
> Gruß Olli
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:45 Do 04.07.2019 | Autor: | Olli1968 |
Hallo Fred,
> > Danke Fred, dass Du so schnell geantwortet hast.
> >
> > Jetzt wo du es geschrieben hast fällt mir wieder ein, dass
> > wir in der Vorlesung einen Satz hatten:
> > [mm]rg(_{B_{2}}(\alpha)_{B_{1}}) = dim_{K} Im(\alpha) [/mm].
> >
> > Es gilt doch: [mm]dim_{K}(Ker(\alpha) + Ker(\beta))= dim_{K}(Ker(\alpha))+dim_{K}(Ker(\beta))-dim_{K}(Ker(\alpha) \cap Ker(\beta))[/mm]
>
> >
> > mit [mm]dim_{K}(Ker(\alpha) \cap Ker(\beta))=0[/mm], da [mm]Ker(\alpha) \cap Ker(\beta)=\{0_{K^{5}}\}[/mm]
>
> >
> > Also gilt doch: [mm]dim_{K}(Ker(\alpha) + Ker(\beta))= dim_{K}(Ker(\alpha))+dim_{K}(Ker(\beta))[/mm]
>
> >
> > Bin ich auf der richtigen Spur??
>
> Ja, schon, aber Du scheinst die Spur nicht zu sehen !
>
> Wie groß ist denn nun
>
> [mm]dim_{K}(Ker(\alpha)[/mm] + [mm]Ker(\beta))[/mm] ?
>
>
> Wenn Du das hast, so hast Du sofort einen Widerspruch, denn
> [mm]Ker(\alpha)[/mm] + [mm]Ker(\beta)[/mm] ist ein Unterraum eines 5
> -dimensionalen Vektorraumes.
> >
> > Gruß Olli
>
Du hattest weiter oben ja gezeigt, das
[mm]dim_{K} Ker(\alpha)=3[/mm] sowie [mm]dim_{K} Ker(\beta)=3[/mm] ist. Somit ist [mm]dim_{K}(Ker(\alpha)[/mm] + [mm]Ker(\beta))=6[/mm] ein Widerspruch zum 5-dimensionalen Vektorraum.
Danke für deine super schnelle Hilfe.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:49 Do 04.07.2019 | Autor: | fred97 |
> Hallo Fred,
>
> > > Danke Fred, dass Du so schnell geantwortet hast.
> > >
> > > Jetzt wo du es geschrieben hast fällt mir wieder ein, dass
> > > wir in der Vorlesung einen Satz hatten:
> > > [mm]rg(_{B_{2}}(\alpha)_{B_{1}}) = dim_{K} Im(\alpha) [/mm].
> >
> >
> > > Es gilt doch: [mm]dim_{K}(Ker(\alpha) + Ker(\beta))= dim_{K}(Ker(\alpha))+dim_{K}(Ker(\beta))-dim_{K}(Ker(\alpha) \cap Ker(\beta))[/mm]
>
> >
> > >
> > > mit [mm]dim_{K}(Ker(\alpha) \cap Ker(\beta))=0[/mm], da [mm]Ker(\alpha) \cap Ker(\beta)=\{0_{K^{5}}\}[/mm]
>
> >
> > >
> > > Also gilt doch: [mm]dim_{K}(Ker(\alpha) + Ker(\beta))= dim_{K}(Ker(\alpha))+dim_{K}(Ker(\beta))[/mm]
>
> >
> > >
> > > Bin ich auf der richtigen Spur??
> >
> > Ja, schon, aber Du scheinst die Spur nicht zu sehen !
> >
> > Wie groß ist denn nun
> >
> > [mm]dim_{K}(Ker(\alpha)[/mm] + [mm]Ker(\beta))[/mm] ?
> >
> >
> > Wenn Du das hast, so hast Du sofort einen Widerspruch, denn
> > [mm]Ker(\alpha)[/mm] + [mm]Ker(\beta)[/mm] ist ein Unterraum eines 5
> > -dimensionalen Vektorraumes.
> > >
> > > Gruß Olli
> >
>
> Du hattest weiter oben ja gezeigt, das
> [mm]dim_{K} Ker(\alpha)=3[/mm] sowie [mm]dim_{K} Ker(\beta)=3[/mm] ist.
> Somit ist [mm]dim_{K}(Ker(\alpha)[/mm] + [mm]Ker(\beta))=6[/mm] ein
> Widerspruch zum 5-dimensionalen Vektorraum.
So ist es !
>
>
> Danke für deine super schnelle Hilfe.
>
|
|
|
|