www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebraische Geometrie" - Hilbertschen Nullstellensatz
Hilbertschen Nullstellensatz < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilbertschen Nullstellensatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:09 Mi 25.04.2018
Autor: noglue

Aufgabe
Sei K ein beliebiger Körper und [mm] a=(a_1,...,a_n)\in A^n_K [/mm] ein Punkt. Zeige

[mm] I(\lbrace a\rbrace)=\langle x_1-a_1,...,x_n-a_n\rangle [/mm]

Hallo,

meine Überlegung:

Sei [mm] \mathfak{m}:=\langle x_1-a_1,...,x_n-a_n\rangle [/mm] maximales Ideal von [mm] K[x_1,...,x_n]. [/mm] Nach Hilbertschen Nullstellensatz gilt dann [mm] V(\mathfrak{m})\not=\emptyset. [/mm] Für jedea [mm] a\in V(\mathfrak{m}) [/mm] gilt also [mm] \mathfrak{m}\subset I(\lbrace a\rbrace). [/mm] Da [mm] \mathfrak{m} [/mm] maximal ist folgt [mm] I(\lbrace a\rbrace)=\langle x_1-a_1,...,x_n-a_n\rangle [/mm]

Ist das richtig?

        
Bezug
Hilbertschen Nullstellensatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 27.04.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Hilbertschen Nullstellensatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Fr 04.05.2018
Autor: felixf

Moin

> Sei K ein beliebiger Körper und [mm]a=(a_1,...,a_n)\in A^n_K[/mm]
> ein Punkt. Zeige
>  
> [mm]I(\lbrace a\rbrace)=\langle x_1-a_1,...,x_n-a_n\rangle[/mm]
>  
> Hallo,
>  
> meine Überlegung:
>  
> Sei [mm]\mathfak{m}:=\langle x_1-a_1,...,x_n-a_n\rangle[/mm]
> maximales Ideal von [mm]K[x_1,...,x_n].[/mm] Nach Hilbertschen
> Nullstellensatz gilt dann [mm]V(\mathfrak{m})\not=\emptyset.[/mm]

Der Körper $K$ ist nicht algebraisch abgeschlossen, womit du den Nullstellensatz hier nicht verwenden kannst.

Du brauchst folgende beiden Zutaten:
a) [mm] $x_i [/mm] - [mm] a_i$ [/mm] liegt in [mm] $I(\{ a \})$ [/mm] für alle $i$;
b) das Ideal [mm] $\mathfak{m}$ [/mm] ist maximal (zeige, dass [mm] $\mathfak{m}$ [/mm] der Kern vom Auswertungshomomorphismus $f [mm] \mapsto [/mm] f(a)$ ist, und wende dann den Homormophiesatz an).

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]