www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Hessesche Normalform
Hessesche Normalform < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hessesche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:03 Di 11.11.2008
Autor: Shabi_nami

Aufgabe
(1) x+2y+2z=9

(2) A(3|2|1) ; B(-1|-1|4) ; C(-5|0|-5)

(3) P (-6|10|16) steht senkrecht auf [mm] g:\vec{x}=\vektor{6 \\ 4 \\ 0}+r*\vektor{-8 \\ 4 \\ 8} [/mm]

Dazu sollen wir jeweils die Hessesche Normalform bilden. Ich war in der Stunde nicht da und ich habe überhaupt keine Ahnung, wie das gehen soll. Kann jemand mir bei dem ersten Beispiel schrittweise helfen??
Danke

        
Bezug
Hessesche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Di 11.11.2008
Autor: MathePower

Hallo Shabi-nami,

> (1) x+2y+2z=9
>  
> (2) A(3|2|1) ; B(-1|-1|4) ; C(-5|0|-5)
>  
> (3) P (-6|10|16) steht senkrecht auf [mm]g:\vec{x}=\vektor{6 \\ 4 \\ 0}+r*\vektor{-8 \\ 4 \\ 8}[/mm]
>  
> Dazu sollen wir jeweils die Hessesche Normalform bilden.
> Ich war in der Stunde nicht da und ich habe überhaupt keine
> Ahnung, wie das gehen soll. Kann jemand mir bei dem ersten
> Beispiel schrittweise helfen??


Bei der Hesseschen Normalform einer Ebenengleichung wird der normierter Normalenvektor, also ein Vektor vom Betrage 1 verwendet.

Hier ist der Normalenvektor [mm]\pmat{1 \\ 2 \\ 2}[/mm]

Der Betrag hiervon: [mm] \wurzel{1^{2}+2^{2}+2^{2}}=3 [/mm]

Somit lautet die Hessesche Normalform:

[mm]\bruch{x+2*y+2*z}{3}=3[/mm]


>  Danke


Gruß
MathePower

Bezug
                
Bezug
Hessesche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Di 11.11.2008
Autor: Shabi_nami

Wie kommt man auf den letzten Teil?

Somit lautet die Hessesche Normalform:

[mm]\bruch{x+2*y+2*z}{3}=3[/mm]

Den Anfang kann ich nachvollziehen


Bezug
                        
Bezug
Hessesche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Di 11.11.2008
Autor: moody

Durch einsetzen in:

[mm]c = \vec{x_{0}} \bruch{\vec{n}}{|\vec{n}|}[/mm]

Bezug
                                
Bezug
Hessesche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Di 11.11.2008
Autor: Shabi_nami

Das verstehe ich immer noch nicht so ganz...

Bezug
                                        
Bezug
Hessesche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Di 11.11.2008
Autor: moody

Sorry meine erste Antwort war nicht sonderlich hilfreich.

Ich versuchs mal etwas detaillierter zu erklären:

Wie MathePower bereits gesagt hat:

"Bei der Hesseschen Normalform einer Ebenengleichung wird der normierter Normalenvektor, also ein Vektor vom Betrage 1 verwendet. "

Der Normalenvektor ist [mm] \vektor{1 \\ 2 \\ 2} [/mm]

Der Betrag war 3.

So um das nun in die HNF zu schreiben überlegst du dir wie du den Vektor  [mm] \vektor{1 \\ 2 \\ 2} [/mm] auf die Länge 1 bekommst.

Nämlich so: [mm] \vektor{1 \\ 2 \\ 2} [/mm] * [mm] \bruch{1}{3} [/mm]

In der Koordinatenform wäre dies:

x + 2y + 2z = 3

In der HNF in Koordinatenschreibweise dann:

[mm] \bruch{x + 2y + 2z}{3} [/mm] = 0

Durch 3 wegen dem Vektor mit der Länge 1.

Bezug
                                                
Bezug
Hessesche Normalform: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:55 Di 11.11.2008
Autor: Shabi_nami

Aber MathePower sagte doch, dass die Hessesche Normalenform

[mm]\bruch{x + 2y + 2z}{3}[/mm] = 3 sei

und du sagst =0

Und wie kommt man dazu, die 1/3 mit in die Ebene einzumultiplizieren?

Bezug
                                                        
Bezug
Hessesche Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Di 11.11.2008
Autor: moody

Wie MathePower auf die 3 kommt weiß ich auch nicht, aber ich will nicht ausschließen, dass ich mich mit den 0 irre.

* 1/3 weil der Vektor ja die Länge 1 haben soll und nicht 3.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]