www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Hessesche Normalform
Hessesche Normalform < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hessesche Normalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Di 04.11.2008
Autor: martin7

Hat eine Hessesche Normalform eigentlich keine Begrenzung?
Also wir haben den Normalenvektor und alle Vektoren die im rechten Winkel darauf stehen sind auf der Ebene, unabhängig von Länge der Vektoren.

Hat diese Ebenenform immer eine unendliche Ausdehung?

Lg
Martin

Erst Poster Satz:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt..

        
Bezug
Hessesche Normalform: Ebenen sind unendlich
Status: (Antwort) fertig Status 
Datum: 21:16 Di 04.11.2008
Autor: Al-Chwarizmi


> Hat eine Hessesche Normalform eigentlich keine Begrenzung?
> Also wir haben den Normalenvektor und alle Vektoren die im
> rechten Winkel darauf stehen sind auf der Ebene, unabhängig
> von Länge der Vektoren.
>
> Hat diese Ebenenform immer eine unendliche Ausdehung?
>  
> Lg
>  Martin


Ich glaube es geht nicht um die unendliche Ausdehnung
der Gleichung, sondern um die der Ebene.

Jede Ebene im dreidimensionalen Raum [mm] \IR^3 [/mm] ist
unendlich ausgedehnt und hat keinen Rand, unabhängig
davon, wie man sie definiert (durch drei in ihr, aber auf
keiner gemeinsamen Geraden liegende Punkte, durch
zwei sich kreuzende Geraden, durch eine Parameterdar-
stellung oder eine Koordinatengleichung).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]