www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Herleitung: Formel Abstand P-G
Herleitung: Formel Abstand P-G < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung: Formel Abstand P-G: Herleitung
Status: (Frage) überfällig Status 
Datum: 23:01 Di 13.11.2007
Autor: StralsunderJung

Grüße euch herzlichst, liebe Matheraum-Gemeinde!

Ich habe mich für einen Vortrag bezüglich des Themas "Abstand Punkt - Gerade" gemeldet und soll meinen Mitschülern nun vermitteln, wieso die Formel eben genauso aussieht und nich' anders... Doch dummerweise is' mein Mathebuch ("LS Analytische Geometrie Leistungskurs" Klasse 13 vom Klett Verlag, S. 147) mir dabei keine große Hilfe...

Denn dort steht nur unter Methode 2:

"In Fig. 147.2 ist [mm] \overline{PF} [/mm] = [mm] \left| \vec r - \vec p \right| [/mm] * cos [mm] \varphi [/mm] =  [mm] \left| \left( \vec r - \vec p \right) * \vec u0 \right| [/mm]  , wobei  [mm] \vec [/mm] u0 ein Richtungsvektor von g vom Betrag 1 ist.
Nach dem Satz des Pythagoras gilt also

d = [mm] \wurzel{\left( \vec r - \vec p \right)^2 - \left( \left( \vec r - \vec p \right) * \vec u0 \right) }" [/mm]

Bemerkung: Die kleinen Mal-Punkte sollen dabei das Skalarprodukt darstellen!


Leider bringt mir dieser Lehrbuchtext gar nichts für meinen Vortrag...
Ich weiß, dass ich hier keine eigenen Lösungsansätze miteinbringe, aber glaubt mir, ich sehe wirklich gar nicht durch - das ist totales Neuland für mich.
Meine einzigen Lösungsideen bisher sind, dass  [mm] \vec [/mm] r - [mm] \vec [/mm] p wohl die Hypotenuse für das rechtwinklige Dreieck PFR (P als Punkt der Geraden, F als Lotfußpunkt sowie R als gegebener Punkt ausserhalb der Geraden) darstellt und d daher die Ankathete sein müsste, damit man mit dem Satz von Pythagoras was anstellen kann... Darauf bezieht sich die Formel ja schließlich, oder? Das habe ich jedenfalls als Tipp bekommen von meinem Kursleiter...

Ich hoffe, dass sich jemand meiner erbarmt und mir hilft? Habe im I-Net auch nichts gefunden, was einer Herleitung genau dieser Formel auch nur annähernd entspricht.


Liebste Grüße aus dem Norden,
Sebastian


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Herleitung: Formel Abstand P-G: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Di 13.11.2007
Autor: leduart

Hallo
Sieh doch mal in unserer Mathebank nach, vielleicht verstehst du es dann!
klick hier
sonst poste oder beschreibe das Bild in deinem Buch, (was ist F, was [mm] \alpha) [/mm]
Gruss leduart

Bezug
        
Bezug
Herleitung: Formel Abstand P-G: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:23 Do 15.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]