www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Herleitung Cramersche R.
Herleitung Cramersche R. < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung Cramersche R.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Mo 27.10.2008
Autor: AbraxasRishi

Hallo allerseits!

Obwohl ich im Buch eine Herleitung stehen habe, kann ich einen Schritt davon nicht so richtig nachvollziehen und zwar:

Nachdem das System [mm] a_{11}x_1+a_{12}x_2=b_1\qquad a_{21}x_1+a_{22}x_2=b_1 [/mm]  mit dem Additionsverfahren um eine Variable reduziert wurde erhält man den Außdruck:   [mm] x_2=\frac{a_{11}b_2-a_{21}b_1}{a_{11}a_{22}-a_{12}a_{21}} [/mm] und soll diesen in die erste Gleichung einsetzen um auf  [mm] x_1=\frac{b_1a_{22}-b_2a_{12}}{a_{11}a_{22}-a_{12}a_{21}}.Mein [/mm] Problem ist, dass ich es nicht schaffe, den Ausdruck soweit zu vereinfachen:

[mm] a_{11}x_1+\frac{a_{12}b_2a_{11}-a_{12}a_{21}b_1}{a_{22}a_{11}-a_{21}a_{12}}=b_1\qquad\frac{b_1}{a_{11}}-\frac{a_{12}b_2a_{11}-a_{12}a_{21}b_1}{a_{22}a_{11}^2-a_{21}a_{12}a_{11}}=x_1=\frac{-2b_1a_{21}a_{12}+b_1a_{11}a_{22}-a_{12}b_2a_{11}}{a_{11}^2a_{22}-a_{21}a_{12}a_{11}} [/mm]

Ich sehe momentan nicht wie man es auf den oben genannten Ausdruck vereinfachen könnte, ich bitte um Hilfe...

Vielen Dank!

Gruß

Angelika

        
Bezug
Herleitung Cramersche R.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Mo 27.10.2008
Autor: Steffi21

Hallo

[mm] a_1_1x_1+a_1_2\bruch{b_2a_1_1-b_1a_2_1}{a_1_1a_2_2-a_1_2a_2_1}=b_1 [/mm]

[mm] a_1_1x_1=b_1-\bruch{b_2a_1_2a_1_1-b_1a_1_2a_2_1}{a_1_1a_2_2-a_1_2a_2_1} [/mm]

[mm] x_1=\bruch{b_1}{a_1_1}-\bruch{b_2a_1_2a_1_1-b_1a_1_2a_2_1}{a_1_1(a_1_1a_2_2-a_1_2a_2_1)} [/mm]

jetzt Hauptnenner

[mm] x_1=\bruch{b_1(a_1_1a_2_2-a_1_2a_2_1)-(b_2a_1_2a_1_1-b_1a_1_2a_2_1)}{a_1_1(a_1_1a_2_2-a_1_2a_2_1)} [/mm]

[mm] x_1=\bruch{b_1a_1_1a_2_2-b_1a_1_2a_2_1-(b_2a_1_2a_1_1-b_1a_1_2a_2_1)}{a_1_1(a_1_1a_2_2-a_1_2a_2_1)} [/mm]

[mm] x_1=\bruch{b_1a_1_1a_2_2-b_1a_1_2a_2_1-b_2a_1_2a_1_1+b_1a_1_2a_2_1}{a_1_1(a_1_1a_2_2-a_1_2a_2_1)} [/mm]

[mm] x_1=\bruch{b_1a_1_1a_2_2-b_2a_1_2a_1_1}{a_1_1(a_1_1a_2_2-a_1_2a_2_1)} [/mm]

[mm] a_1_1 [/mm] kürzen

[mm] x_1=\bruch{b_1a_2_2-b_2a_1_2}{a_1_1a_2_2-a_1_2a_2_1} [/mm]

geschafft Steffi











Bezug
                
Bezug
Herleitung Cramersche R.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 Mo 27.10.2008
Autor: AbraxasRishi

Vielen Dank!

Nun habe ich meinen Fehler gefunden- es war die Klammer nach dem Minus, als ich den Hauptnenner gemacht hatte....

Gruß

Angelika



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]