www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Herleitung Bewegungsgleichung
Herleitung Bewegungsgleichung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung Bewegungsgleichung: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:29 Mo 29.03.2010
Autor: moomann

Hallo,

ich versuche, eine Herleitung aus einem Paper nachzuvollziehen, die ich in einem Bild angehängt habe.
[a][Bild Nr. 1 (fehlt/gelöscht)]

Kann mir jemand erklären, wie die Gleichung (B3) geschlussfolgert wurde? Ich sehe es einfach nicht.


Edit: Ich bin mir nicht sicher wegen des Copyrights und schreibe das mal in eigenen Worten ab:

Es wird eine beliebige Anzahl an Punktladungen gleicher Ladung und Masse betrachtet und es soll klassisch gerechnet werden.
Die Bewegungsgleichung ist
[mm] M\frac{d^2}{dt^2}\vec{x_i}=-\frac{\partial\phi}{\partial\vec{x_i}}, [/mm]
wobei das Potential gegeben ist durch
[mm] \phi [/mm] = [mm] \summe_{i}^{} \left( \summe_{i>j}^{} \frac{q^2}{|\vec{x_i}-\vec{x_j}|}+\frac{1}{2}M\omega^2 \vec{x_i}^2\right). [/mm]

Ein Gleichgewichtszustand sei durch [mm] \vec{x_i}^{(0)} [/mm] bezeichnet. Dieser kennzeichnet sich durch
[mm] \frac{\partial\phi}{\partial\vec{x_i}}|_{\vec{x_i}^{(0)}}=0 [/mm] (Verschwinden der Kräfte auf einzelne Teilchen).

Es soll nur eine Lösung betrachtet werden, bei der sich die Teilchen radial bewegen, was durch die Transformation
[mm] \vec{x_i}=f(t)\vec{x_i}^{(0)} [/mm]
ausgedrückt wird (Bewegung proportional zur Gleichgewichtsposition).
Dieser transformierte Ausdruck wird in die Bewegungsgleichung eingesetzt. In meiner Quelle steht dann: "Eq. (...) implies that we may factor out the terms depending on f to obtain
[mm] \left( M\frac{d^2}{dt^2}f+M\omega^2\left(f-\frac{1}{f^2} \right) \right)\vec{x_i}^{(0)}=0. [/mm] "
Diese Gleichung will ich anschließend linearisieren und lösen, aber das soll hier weiter nicht interessieren. Die Frage ist: Wie komme ich auf die letzte Gleichung? Insbesondere das "factor out" verstehe ich nicht. Wo ist der Term mit dem Teilchenabstand im Nenner geblieben? Das Einsetzen in die Bewegungsgleichung (inkl. Ableiten) kriege ich hin, habe es hier aber noch nicht aufgeschrieben.

        
Bezug
Herleitung Bewegungsgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 Mo 29.03.2010
Autor: leduart

Hallo
Da ist kein Bild, und du kannst hier auch keins einbinden , das vielleicht copyrights verletzt.
also mach sicher ,dass das nicht gilt, oder gib nen link zu der seite, oder schreib ab.
Gruss leduart

Bezug
                
Bezug
Herleitung Bewegungsgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:09 Mo 29.03.2010
Autor: moomann

Der Artikel ist editiert.

Bezug
                        
Bezug
Herleitung Bewegungsgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:19 Di 30.03.2010
Autor: moomann

Ich habe das Problem glücklicherweise doch selbst gelöst. Alles hat seine Richtigkeit.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]