www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Herleitung Bedingung Attraktor
Herleitung Bedingung Attraktor < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung Bedingung Attraktor: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 17:32 Mi 07.03.2007
Autor: Moham

Aufgabe
Beweise, p sei ein Attraktor wenn gilt:
f(p)=p
|f'(p)| < 1

(Ein solcher Attraktor ist ein einfacher aus einem Fixpunkt bestehender Attraktor. Er tritt zum beispiel bei der logistischen Abbildung für s < 3 auf, wenn man iteriert)

So der Beweis sieht wie folgt aus. Im groben und ganzen ist mir der Ansatz usw komplett klar. Jedoch macht mir das ominöse "A", welches immer wieder auftaucht kopfzerbrechen. Ich komm einfach nicht dahinter, wofür dies stehen soll. Die Quelle, woraus ich die Herleitung habe, erläutert bzw. erwähnt das "A" nie. Dennoch spielt es eine wesentliche Rolle. Vielleicht hat er eine Bedeutung, die ich einfach verschlafen habe als ich Differentialrechnung in der Schule hatte... Hilfe wäre super.

Wegen der Stetigkeit von f’(x) gibt es für alle x in einem hinreichend kleinen Intervall U = ]p- [mm] \varepsilon, [/mm] p+ [mm] \varepsilon[ [/mm]  ein A < 1 mit |f’(x)| < A. Mit f(p) = p und x [mm] \in [/mm] U ergibt sich |f(x)-p| = |f(x)-f(p)|.
Nach Anwendung des Mittelwertsatzes* ergibt sich daraus folgende Gleichung:
|f(x)-f(p)| = |f’(c)| · |x-p|
Dabei ist c eine Stelle zwischen x und p. Also gilt f’(c) < A < 1.
Insgesamt folgt daraus: |f(x)-p| = |f(x)-f(p)| < A |x-p| < A · [mm] \varepsilon [/mm] < [mm] \varepsilon. [/mm]
Wegen |f(x)-p|< [mm] \varepsilon [/mm] gilt f(x) [mm] \in [/mm] U und wegen |f(x)-p|<|x-p| liegt f(x) sogar näher an p als x.
Bei den weiteren Iterationen ergibt sich [mm] |f^{n} [/mm] (x)-p| < [mm] A^{n} [/mm] |x-p|. Daraus folgt wegen A < 1 die Existenz des angegebenen Grenzwertes.

Es geht wie gesagt nur um die Rolle / Bedeutung vom A!

MfG!


        
Bezug
Herleitung Bedingung Attraktor: Antwort
Status: (Antwort) fertig Status 
Datum: 01:43 Do 08.03.2007
Autor: leduart

Hallo
f'<1 damit kann man schlecht hantieren. Deshalb nimmt man ne Zahl [mm] A=1-\varepsilon [/mm]  die echt kleiner 1 ist, [mm] (Ziel:A^n [/mm] gegen 0) und schreibt statt f'<1 lieber f'<A<1. also nur ne Praezisierung von f'<1.
Jeder andere name als A tuts natuerlich auch.
War das die Frage?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]