Hausdorff-Räume < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt
http://www.uni-protokolle.de/foren/viewt/23172,0.html und
http://www.brd.nrw.de/BezRegDdorf/hierarchie/lerntreffs/mathe/structure/chat/homepage.php
Ich bitte um Hilfe bei folg. Aufgabe:
Für bel. a,b,c [mm] \in \IR \cup(- \infty, \infty) [/mm] seien die Mengen [mm] S_{a,b}={(x,y)\in \IR^2:x \in(a,b)} [/mm] und [mm] M_{c}={(x,y)\in \IR^2:x>y+c} [/mm] definiert. Es ist bekannt, dass dann das System S von Vereinigungen der [mm] S_{a,b} [/mm] und [mm] T={M_{c}:c \in \IR \cup(- \infty, \infty)} [/mm] Topologien auf [mm] \IR^2 [/mm] bilden. Sind die topologischen Räume [mm] (\IR^2,S) [/mm] und [mm] (\IR^2,T) [/mm] Hausdorff-Räume? Untersuchen Sie die Folgen [mm] (1-\bruch{1}{n},\bruch{1}{n}) [/mm] auf Konvergenz in den jeweiligen Räumen. Wogegen konvergiert sie in der Topologie S, wogegen in T?
Sieht hier irgendjemand durch? Ich kann der Aufgabe nicht mal entnnehmen, was die Topologien sind. Und wie weist man die Hausdorff-Eigenschaft nach?
Vielen Dank.
|
|
|
|
Hallo!
Deine Topologien sind [mm] ${\cal{S}}:=\{S_{a,b}:\ a,b\in\IR\cup\{-\infty;\infty\}\}$ [/mm] und [mm] ${\cal{T}}:=\{M_{c}:\ c \in \IR \cup\{- \infty, \infty\}\}$.
[/mm]
Um die Hausdorff-Eigenschaft nachzuweisen, nimmst du zwei beliebige Punkte und suchst zwei offene Mengen (also Elemente deiner Topologie), deren Schnitt leer ist und die Umgebung von je einem der beiden Punkte sind.
In diesem Fall würde ich aber mal vermuten, dass das keine Hausdorffräume sind. Teste doch mal für [mm] $\cal{S}$ [/mm] die Punkte $(0,0)$ und $(0,1)$! Und für [mm] $\cal{T}$ [/mm] teste doch mal $(0,0)$ und $(1,1)$...
Gruß, banachella
|
|
|
|
|
Sind dann die Punkte, die du mir gesagt hast, meine offenen Mengen? Dann wären die Mengen natürlich nicht disjunkt. Und wie weise ich die Folgenkonvergenz nach?
Danke für deine Antwort!! mathmetzsch
|
|
|
|
|
Also ich meine, klar ist, dass der Schnitt der Umgebungen um die Punkte dann nicht leer ist. Soweit ist die Frage beantwortet, aber wie sieht die Konvergenz der Folgen in den topologischen Räumen aus?
Grüße mathmetzsch
|
|
|
|
|
Hallo!
Schlag doch mal Konvergenz in topologischen Räumen nach und versuche mit diesen Definitionen ein bisschen rumzuspielen... Hast du denn schon einen Ansatz versucht?
Gruß, banachella
|
|
|
|