www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Hauptachsentransformation
Hauptachsentransformation < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptachsentransformation: euklidische Nromalenform
Status: (Frage) beantwortet Status 
Datum: 19:45 Sa 01.03.2008
Autor: Slartibartfast

Aufgabe
[mm] $Q=\{(x_1 , x_2 , x_3 )\in\IR^3 | -x_1^2 +x_3^2 +4x_1 x_2-4x_2 x_3 +\bruch{8}{3}x_1+\bruch{10}{3}x_2-\bruch{4}{3}x_3+\bruch{1}{3}=0\}$ [/mm]

Hallo zusammen,

ich will og Quadrik in die euklidische Normalenform überführen. Dazu berechne ich die Transformationsmatrix über die Eigenvektoren - was ich auch hinbekommen habe.

[mm] $T=\bruch{1}{3}\pmat{ 1 & -2 & 2 \\ 2 & 2 & 1 \\ -2 & 1 & 2 }$ [/mm]

Nun geht es mit folgender Gleichung weiter:

[mm] $\vec{y}^T (T^{-1} [/mm] A [mm] T)\vec{y}+2(T^{-1} \vec{a})\vec{y}+c=0 [/mm] $ (*)

Hier liegt mein Problem. Ich bekomme einfach nicht den Ausdruck [mm] $(T^{-1} [/mm] A T)$ hin. Es soll ja auch den Fall geben, bei dem man [mm] $T^{-1}$ [/mm] mit [mm] $T^T$ [/mm] ersetzen darf - oder gar einer Matrix D mit den Eigenwerten von A als Spur und den Rest voller 0en. Wann ist das so?
Jedenfalls komme ich, egal wie ich es rechne, nicht auf die gewünschte Form von

[mm] $3y_1^2 -3y_2^2 +4y_1 +2y_3 +\bruch{1}{3}=0$ [/mm]

Weiter:

[mm] $\vec{a} [/mm] = [mm] \vektor{\bruch{8}{3} \\ \bruch{10}{3} \\ -\bruch{4}{3}} \wedge [/mm] c = [mm] \bruch{1}{3} \wedge A=\pmat{ -1 & 2 & 0 \\ 2 & 0 & -2 \\ 0 & -2 & 1 }$ [/mm]

In meinen Aufschrieben steht, dass
[mm] $\vec{a} [/mm] = [mm] \bruch{1}{2}\vektor{\bruch{8}{3} \\ \bruch{10}{3} \\ -\bruch{4}{3}}$ [/mm]
sein soll, da würde sich das [mm] $\bruch{1}{2}$ [/mm] aber wieder mit dem Faktor 2 aus Gl. (*) rauskürzen.

Ich bin leicht verzweifelt.


Danke für Hilfe
Grüße
Slartibartfast


        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Sa 01.03.2008
Autor: MathePower

Hallo Slartibartfast,

> [mm]Q=\{(x_1 , x_2 , x_3 )\in\IR^3 | -x_1^2 +x_3^2 +4x_1 x_2-4x_2 x_3 +\bruch{8}{3}x_1+\bruch{10}{3}x_2-\bruch{4}{3}x_3+\bruch{1}{3}=0\}[/mm]
>  
> Hallo zusammen,
>  
> ich will og Quadrik in die euklidische Normalenform
> überführen. Dazu berechne ich die Transformationsmatrix
> über die Eigenvektoren - was ich auch hinbekommen habe.
>  
> [mm]T=\bruch{1}{3}\pmat{ 1 & -2 & 2 \\ 2 & 2 & 1 \\ -2 & 1 & 2 }[/mm]
>  
> Nun geht es mit folgender Gleichung weiter:
>  
> [mm]\vec{y}^T (T^{-1} A T)\vec{y}+2(T^{-1} \vec{a})\vec{y}+c=0[/mm]
> (*)
>  
> Hier liegt mein Problem. Ich bekomme einfach nicht den
> Ausdruck [mm](T^{-1} A T)[/mm] hin. Es soll ja auch den Fall geben,
> bei dem man [mm]T^{-1}[/mm] mit [mm]T^T[/mm] ersetzen darf - oder gar einer
> Matrix D mit den Eigenwerten von A als Spur und den Rest
> voller 0en. Wann ist das so?
>  Jedenfalls komme ich, egal wie ich es rechne, nicht auf
> die gewünschte Form von
>
> [mm]3y_1^2 -3y_2^2 +4y_1 +2y_3 +\bruch{1}{3}=0[/mm]

Es muss auch gerechnet werden: [mm]T^{T}*A*T=\left(T^{T}*A\right)*T=T^{T}*\left(A*T\right)[/mm]

Demnach lautet die Gleichung:
[mm]\vec{y}^T (T^{T} A T)\vec{y}+2(T^{T} \vec{a})\vec{y}+c=0[/mm]

Dann kommt auch das gewünschte heraus.

>  
> Weiter:
>  
> [mm]\vec{a} = \vektor{\bruch{8}{3} \\ \bruch{10}{3} \\ -\bruch{4}{3}} \wedge c = \bruch{1}{3} \wedge A=\pmat{ -1 & 2 & 0 \\ 2 & 0 & -2 \\ 0 & -2 & 1 }[/mm]
>  
> In meinen Aufschrieben steht, dass
> [mm]\vec{a} = \bruch{1}{2}\vektor{\bruch{8}{3} \\ \bruch{10}{3} \\ -\bruch{4}{3}}[/mm]
>  
> sein soll, da würde sich das [mm]\bruch{1}{2}[/mm] aber wieder mit
> dem Faktor 2 aus Gl. (*) rauskürzen.
>
> Ich bin leicht verzweifelt.
>  
>
> Danke für Hilfe
>  Grüße
>  Slartibartfast
>  

Gruß
MathePower

Bezug
                
Bezug
Hauptachsentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 So 02.03.2008
Autor: Slartibartfast

Erstmal vielen Dank, ich bin jetzt auch auf das gesuchte Ergebnis gekommen - aber warum darf ich [mm] $T^{-1}=T^{T}$ [/mm] setzen? Und wann gilt der Fall [mm] $(T^{-1}AT)=D=\pmat{ \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 }$ [/mm]

Und was ist mit dem [mm] $\bruch{1}{2}*2$ [/mm] bei [mm] $T^{T}*\vec{a}$ [/mm]

??

Gruß
Slartibartfast

Bezug
                        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 So 02.03.2008
Autor: MathePower

Hallo Slartibartfast,

> Erstmal vielen Dank, ich bin jetzt auch auf das gesuchte
> Ergebnis gekommen - aber warum darf ich [mm]T^{-1}=T^{T}[/mm]
> setzen? Und wann gilt der Fall [mm](T^{-1}AT)=D=\pmat{ \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 }[/mm]

Hier darf man [mm]T^{-1}=T^{T}[/mm] setzen, weil die Matrix T eine orthonormale Matrix ist.Demnach hast Du Dich wahrscheinlich bei der Berechung von [mm]T^{-1}[/mm] vertan.

>  
> Und was ist mit dem [mm]\bruch{1}{2}*2[/mm] bei [mm]T^{T}*\vec{a}[/mm]

Nach den Aufschrieben ist [mm]x^{T}*A*x+2*a^{T}*x+d=0[/mm]

Andererseits haben wir: [mm]x^{T}*A*x+u^{T}*x+d=0[/mm]

Wenn nun laut Skript [mm]\overrightarrow{a}=\bruch{1}{2}*\overrightarrow{u}[/mm] ist und ich das in die Gleichung nach den Aufschrieben einsetze, habe ich eine Gleichung,  die identisch mit der darunterstehenden ist.

Richte Dich also immer nach den Aufschrieben.

>  
> ??
>  
> Gruß
>  Slartibartfast

Gruß
MathePower

Bezug
                                
Bezug
Hauptachsentransformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 So 02.03.2008
Autor: Slartibartfast

Dankeschön, dann hoffe ich mal, dass morgen eine Quadrik drankommt.

Gruß
Slartibartfast

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]