www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Hauptachsentransformation
Hauptachsentransformation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptachsentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:03 Fr 25.08.2006
Autor: garfieldxxs

Hallo ihr!

Habe mal eine ganz kurze Frage - und zwar geht es um die Transformationsmatrix für eine Hauptachsentransformation. Angenommen, ich habe einfach ein Polynom der Form [mm] x^t [/mm] A x gegeben. Wenn A diagonalisierbar ist, so kann ich das ganze doch mit Hilfe einer Transformationsmatrix T, die als Spalten die Eigenvektoren enthält auf die Form [mm] \lambda_1 x_1^2 [/mm] + [mm] \lambda_2 x_2^2 [/mm] bringen, wobei die [mm] \lambda [/mm] die Eigenwerte sind. Ok - so weit so gut.
Aber wenn ich nun die Eigenvektoren in T in vertauschter Reihenfolge eintrage, so tausche ich auch die [mm] \lambda [/mm] s, oder? Woher weiß ich denn dann, welches [mm] \lambda [/mm] vor welchem [mm] x^2 [/mm] steht?? Oder ist das egal???

Wäre sehr dankbar für eine Hilfe!

        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Fr 25.08.2006
Autor: Christian

Hallo.

Du erhältst das transformierte Polynom doch dadurch, indem Du $A$ durch [mm] $T^{T}AT=\pmat{ \lambda_1 & 0 \\ 0 & \lambda_2 }$ [/mm] ersetzt. Wenn Du die Eigenwerte in vertauschter Reihenfolge einsetzt, erhältst Du eben [mm] $\pmat{ \lambda_2 & 0 \\ 0 & \lambda_1}$. [/mm] Wie lautet Dein Polynom dann?

Gruß,
Christian

Bezug
                
Bezug
Hauptachsentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Fr 25.08.2006
Autor: garfieldxxs

Ja, genauso, nur dass die Koeffizienten vor [mm] x_1^2 [/mm] und [mm] x_2^2 [/mm] vertauscht sind, oder??

Bezug
                        
Bezug
Hauptachsentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Fr 25.08.2006
Autor: Christian

Ja, genau das.
Denn: Was tut denn die Hauptachsentransformation anschaulich?
Die Transformationsmatrix bewirkt eine Drehung/Spiegelung, so daß das beschreibende Polynom eine besonders einfache Gestalt annimmt. Im Fall vertauschter Eigenvektoren "drehst" Du einfach "andersrum" bzw. Du fügst eine Spiegelung hinzu.

Gruß,
Christian

Bezug
                                
Bezug
Hauptachsentransformation: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:19 Fr 25.08.2006
Autor: garfieldxxs

Ok - dann ist es also völlig egal, in welcher Reihenfolge ich sie eintrage! Kapiert :-)
Danke!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]