www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Komplexität & Berechenbarkeit" - Halteproblem- Entscheidbarkeit
Halteproblem- Entscheidbarkeit < Komplex. & Berechnb. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halteproblem- Entscheidbarkeit: ich versteh den beweis irgendw
Status: (Frage) beantwortet Status 
Datum: 07:27 Sa 31.12.2005
Autor: ehrlichbemuehter

Aufgabe
Ich verstehe das halteproblem nicht!

Betrachten Sie bitte folgenden beweis:

[Dateianhang nicht öffentlich]

folgendes verstehe ich (mal rückwaerts aufgedroeselt):
w  [mm] \not\in [/mm] K  [mm] \gdw [/mm] f'(w)=1
nur wie komme ich dann auf die absurde annahme dass
daraus folg:
[mm] \gdw M'=M_w [/mm] angesetzt auf w hält [mm] \gdw [/mm] w [mm] \in [/mm] K
???

ich glaube ich bringe da irgend etwas mit der entscheidbarkeit durcheinander, waere echt super wenn mir jemand zum neuen jahr der das halteproblem immanent verstanden hat was dazu erlaeutern koente

gruss
christian




Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
Halteproblem- Entscheidbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Sa 31.12.2005
Autor: mathiash

Hallo christian,

so schwer es einem auch fallen mag, dies am Anfang zu begreifen: Jede Aequivalenz
folgt direkt aus einer Definition oder Annahme, ist also elementar.

Gehen wir es durch:

[mm] \omega' \not\in [/mm] K          [mm] \Leftrightarrow [/mm]   (nach definition der partiellen Funktion f')
[mm] f'(\omega') [/mm] =1               [mm] \Leftrightarrow [/mm]   (nach Def. der Funktion f')
[mm] M'=M_{\omega'} [/mm] (das ist ja die Annahme, dass es solches [mm] M'=M_{\omega'} [/mm] fuer f' gibt)
haelt  auf Eingabe [mm] \omega' [/mm]  und gibt 1 aus  

[mm] \leftrightarrow (nach definition des halteproblems) \omega'\in K -Widerspruch. Also kann eben nicht die Funktion f' partiell rekursiv sein und somit auch nicht das Halteproblem entscheidbar. Wie man sieht: Auch und gerade Beweise, in denen jeder Schritt elementar ist, koennen es in sich haben. Ein besseres Beispiel hierfuer ist uebrigens der Rekursionssatz, zur Lektuere des selbigen kann man auf das textbuch von Rogers zurueckgreifen. Allen einen guten Start ins neue Jahr ! Mathias [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]