www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Halbstetig, viele Fragen, Def.
Halbstetig, viele Fragen, Def. < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbstetig, viele Fragen, Def.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:06 Mo 23.03.2015
Autor: sissile

Aufgabe
Eine Funktion [mm] f:X\rightarrow \IR [/mm] auf denm topologischen Raum X heißt halbstetig von unten(bzw. von oben), wenn für jedes c [mm] \in \IR [/mm] die Menge [mm] \{x\in X: f(x)>c\} [/mm] (bzw. [mm] \{x \in X:f(x) ZZ.: Eine Funktion [mm] f:X\rightarrow \IR [/mm] ist stetig genau dann wenn f halbstetig von oben und von unten ist.





[mm] \Rightarrow [/mm]
Da das Urbild von offenen Mengen offen ist unter der stetigen Funktion f folgt:
[mm] ]-\infty, [/mm] c[ offen [mm] \rightarrow f^{-1}(]-\infty,c[)=\{x\inX : f(x) < c\} [/mm] offen
]c, [mm] \infty[ [/mm] offen [mm] \rightarrow f^{-1}(]c,\infty[)=\{x\inX : f(x) > c\} [/mm] offen

[mm] \Leftarrow [/mm]
Ich hatte den Ansatz zuzeigen, dass das Urbild von offenen Mengen wieder offen ist.
Dazu hab ich einen Beweis aus einer Aufgabe die aber nicht zu der Vorlesung gehört hervorgekrammt, dass W offen in [mm] \IR \gdw [/mm] W (höchstens) abzählbare Vereinigung offener disjunkter Intervalle. Wir haben das dort mittels einer eingeführten Äquivalenzrelation gezeigt: x~y [mm] \gdw \exists [/mm] offenes Interval I: [mm] \{x\},\{y,\} \in [/mm] I [mm] \subseteq [/mm] W. Und dann gesehen, dass die Äquivalenzklassen offener Intervalle sind.

[mm] f^{-1}(\bigcup_{x\in \IQ} (a(x),b(x))=\{x\in X: f(x) \in \bigcup_{x\in \IQ} (a(x),b(x))\} =\{ x \in X: \exists x_j \in \IQ: f(x)> a(x_j) \wedge f(x) offen als Vereinigung zweier offener Mengen.

Würde das so passen?

Allerdings war ich noch auf der Suche nach einen Alternativweg ohne, dass man alle offenen Mengen der reellen Zahlen kennen muss.
Bei Wikipedia wird eine andere Definitiion von Ober/Unter-halbstetig geliefert:
"Sei X ein topologischer Raum, x in X und f: X [mm] \to \mathbb{R} [/mm] eine reellwertige Funktion. f heißt in [mm] x_0 [/mm] oberhalbstetig, wenn für jedes [mm] \varepsilon [/mm] > 0 eine Umgebung U von [mm] x_0 [/mm] existiert, so dass f(y) < [mm] f(x_0) [/mm] + [mm] \varepsilon [/mm] für alle y in U gilt."

Wir haben stetigkeit in einen topologischen Raum z.B mittels Umgebungen definiert:Die Abbildung [mm] f:X\to [/mm] Y heißt stetig in x, wenn für jede Umgebung V von f(x) eine Umgebung U von x existiert, so daß [mm] f(U)\subseteq [/mm] V.  
D.h. im Bsp. [mm] f:X\rightarrow \IR [/mm]
Für alle Umgebungen I von f(x), was offene Intervalle sind (muss ich dass zeigen??), [mm] \exists [/mm] Umgebung  U von x: f(U) [mm] \subseteq [/mm] I
Aber warum muss [mm] I=(f(x)-\epsilon, f(x)+\epsilon) [/mm] so punktsymmetrisch um f(x) liegen?

LG,
sissi

        
Bezug
Halbstetig, viele Fragen, Def.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 25.03.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]