www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Halbgruppenhomomorphismen
Halbgruppenhomomorphismen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbgruppenhomomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:43 So 24.10.2010
Autor: l1f3x

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich habe gerade folgendes Problem: Es geht in einer Aufgabe hier darum, zu zeigen, dass ein Halbgruppenhomomorphismus zwischen Monoiden im Allgemeinen kein Monoidhomomorphismus ist. Dabei habe ich schon folgendes, grundlegendes Problem:
Warum gilt die bei Gruppen übliche Argumentation, dass das Bild des neutralen Elementes der einen Gruppe dem neutralen Element der anderen Gruppe entspricht, hier nicht? Damit meine ich folgendes:

[mm]f:G\to H, f(e_G * g)=f(g)=f(e_G)*f(g)für alle g\Rightarrow f(e_G)=e_H [/mm]


        
Bezug
Halbgruppenhomomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:40 So 24.10.2010
Autor: felixf

Moin!

>  ich habe gerade folgendes Problem: Es geht in einer
> Aufgabe hier darum, zu zeigen, dass ein
> Halbgruppenhomomorphismus zwischen Monoiden im Allgemeinen
> kein Monoidhomomorphismus ist. Dabei habe ich schon
> folgendes, grundlegendes Problem:
> Warum gilt die bei Gruppen übliche Argumentation, dass das
> Bild des neutralen Elementes der einen Gruppe dem neutralen
> Element der anderen Gruppe entspricht, hier nicht? Damit
> meine ich folgendes:
>  
> [mm]f:G\to H, f(e_G * g)=f(g)=f(e_G)*f(g)für alle g\Rightarrow f(e_G)=e_H[/mm]

Wenn $f$ surjektiv ist, gilt dies.

$f$ muss aber nicht surjektiv sein.

Und das, was du hingeschrieben hast, ist auch nicht das Argument, was man in Gruppen benutzt. Da macht man naemlich: [mm] $f(e_G) [/mm] = [mm] f(e_G [/mm] * [mm] e_G) [/mm] = [mm] f(e_G) [/mm] * [mm] f(e_G)$; [/mm] und wenn man mit [mm] $f(e_G)^{-1}$ [/mm] multipliziert, steht da [mm] $e_H [/mm] = [mm] f(e_G)$. [/mm]

Das meiste davon geht in einer Halbgruppe auch, aber der entscheidene Schritt, naemlich die Existenz von [mm] $f(e_G)^{-1}$, [/mm] die ist im Allgemeinen nicht gegeben!

(Und daran scheitert es dann auch...)

Was fuer echte Halbgruppen (die nicht gleichzeitig Gruppen sind) kennst du denn?

LG Felix


Bezug
                
Bezug
Halbgruppenhomomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 So 24.10.2010
Autor: l1f3x

Danke schonmal! Mir ist jetzt klarer wo genau das Problem hier liegt. Als Monoide fallen mir die natürliche Zahlen ein, mit Addition oder Multiplikation als Verknüpfung. Da habe ich aber keine Idee wie ich einen entsprechenden Homomorphismus konstruieren könnte. Deshalb habe ich es mal mit dem Monoid versucht, der aus der Potenzmenge und der Inklusion als Verknüpfung besteht:

Sei [mm]M \subset N,\: G=(\mathcal{P}(M),\cap),\:H=(\mathcal{P}(N),\cap)[/mm] sind Monoide. Dann müsste folgende Abbildung:

[mm]f:G \to H,\:f(A)=A\:falls\:m \in A,\:f(A)= \emptyset\:falls\:m \not\in A[/mm]
Dabei ist m ein festes Element von M. Dies müsste ein Halbgruppenhomomorphismus sein. Aber da [mm]f(M)=M\not=N[/mm] kein Monoidhomomorphismus. Stimmt das? Gibt es da auch einfachere Beispiele?

Bezug
                        
Bezug
Halbgruppenhomomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 So 24.10.2010
Autor: felixf

Moin!

> Danke schonmal! Mir ist jetzt klarer wo genau das Problem
> hier liegt. Als Monoide fallen mir die natürliche Zahlen
> ein, mit Addition oder Multiplikation als Verknüpfung.

Die natuerlichen Zahen (inklusive Null!) zusammen mit der Multiplikation sind gut. Du kannst einen einfachen Halbgruppenmonomorphismus [mm] $\IN \to \IN \times \IN$ [/mm] angeben, der kein Monoidhomomorphismus ist.

> Da
> habe ich aber keine Idee wie ich einen entsprechenden
> Homomorphismus konstruieren könnte. Deshalb habe ich es
> mal mit dem Monoid versucht, der aus der Potenzmenge und
> der Inklusion als Verknüpfung besteht:
>  
> Sei [mm]M \subset N,\: G=(\mathcal{P}(M),\cap),\:H=(\mathcal{P}(N),\cap)[/mm]
> sind Monoide. Dann müsste folgende Abbildung:
>  
> [mm]f:G \to H,\:f(A)=A\:falls\:m \in A,\:f(A)= \emptyset\:falls\:m \not\in A[/mm]
>  
> Dabei ist m ein festes Element von M.

Warum nicht einfach gleich $f$ als Inklusion $G [mm] \to [/mm] H$? Das reicht hier schon voellig.

> Dies müsste ein
> Halbgruppenhomomorphismus sein.

Ja, das duerfte es.

> Aber da [mm]f(M)=M\not=N[/mm] kein
> Monoidhomomorphismus. Stimmt das?

Falls $M$ eine echte Teilmenge von $N$ ist, ja.

> Gibt es da auch
> einfachere Beispiele?  

Siehe oben :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]