www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Häufungspunkte folgendern Meng
Häufungspunkte folgendern Meng < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Häufungspunkte folgendern Meng: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Mi 11.01.2006
Autor: tommy1234

Aufgabe
Bestimmen Sie die Häufungspunkte folgendern Mengen:

(a) [mm] U_r(0) [/mm] :=  [mm] \{z\in \IC | |z| < r \} [/mm] mit r > 0
(b) [mm] \{n | n\in\IN \} \subseteq \IR [/mm]
(c) [mm] \{x_n | n\in \IN \}, [/mm] wobei [mm] ({x_n})_{n\in\IN} [/mm] eine konvergente Folge in [mm] \IC [/mm] ist

Hallo,

Kann mir da jemand helfen. Ich würde sagen, dass (b) keine Häufungspunkte besitzt laut Definition von Häufungspunkten einer Menge. Oder lieg ich da falsch?

        
Bezug
Häufungspunkte folgendern Meng: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Mi 11.01.2006
Autor: Stefan

Hallo!

Bei der b) liegst du richtig.

Bei a) ist offenbar [mm] $\overline{U_r(0)}=\{z \in \IC\, : \, |z| \le r\}$ [/mm] die Menge der Häufungspunkte.

Und bei der c) musst du höllisch aufpassen, da hier die Häufungspunkte der Menge der Folgenglieder und nicht etwa der Folge selbst gesucht sind.

Unterscheide die beiden Fälle, dass die Folge konstant ist (dann gibt es keinen Häufungspunkt, da die Menge dann nur ein Element enthält und somit in keiner Umgebung dieses Elementes ein davon verschiedenes Element der Menge liegt!) oder nicht-konstant ist (dann ist der Grenzwert der einzige Häufungspunkt).

Liebe Grüße
Stefan


Bezug
        
Bezug
Häufungspunkte folgendern Meng: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:14 Do 12.01.2006
Autor: tommy1234

Vielen Dank.
Zu (a) noch mal eine kurze Nachfrage mit [mm] \overline{U_r(0)} [/mm] = [mm] \{z\in \IC | \vmat{z} \le r \} [/mm] ist doch quasi der Limes Superior von der Menge gemeint oder?, also wäre doch dann der Limes Superior gleich r, oder sehe ich das falsch?

Bezug
                
Bezug
Häufungspunkte folgendern Meng: Antwort
Status: (Antwort) fertig Status 
Datum: 07:49 Do 12.01.2006
Autor: mathiash

Hallo,

Stefan meinte nicht einen Limes Superior, sondern den Abschluss der offenen
Kugel mit Radius r um 0, also die Menge aller Punkte in [mm] \IC, [/mm] die Betrag leq r haben.

Allgemein ist für  [mm] U\subseteq \IC [/mm]   mit [mm] \overline{U} [/mm] der topologische Abschluss von U
bezeichnet, also die kleinste abgeschlossene Menge A, die U enth"alt.

Viele Gruesse,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]