www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Gültigkeit von Aussagen
Gültigkeit von Aussagen < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gültigkeit von Aussagen: Aufgabe mit Lösung
Status: (Frage) beantwortet Status 
Datum: 22:41 Mo 17.02.2014
Autor: starki

Aufgabe
Geben Sie zu den folgenden Formeln an, ob sie allgemeingültig, erfüllbar, falsifizierbar, unerfüllbar sind.

(a) $ q $

(b) $ q [mm] \vee [/mm] p $

(c) $ p [mm] \vee \neg [/mm] p $

(d) $ p [mm] \rightarrow \neg [/mm] p $

(e) $ [mm] \neg [/mm] p [mm] \rightarrow [/mm] p $

(f)  $ p [mm] \rightarrow [/mm] (q [mm] \rightarrow [/mm] p) $

(g) $ p [mm] \rightarrow [/mm] (p [mm] \rightarrow [/mm] q) $

(h) $ ((p [mm] \rightarrow [/mm] q) [mm] \wedge [/mm] p) [mm] \rightarrow [/mm] p $

Hier mal meine Lösungen:

a) $ q $ => erfüllbar

b) $ q [mm] \vee [/mm] p $ => erfüllbar

c) $ p [mm] \vee \neg [/mm] p $ => allgemeingültig

d) $ p [mm] \rightarrow \neg [/mm] p [mm] \equiv \neg [/mm] p [mm] \vee \neg [/mm] p [mm] \equiv \neg [/mm] p $ => erfüllbar

e) $ [mm] \neg [/mm] p [mm] \rightarrow \p \equiv \neg \neg [/mm] p [mm] \vee [/mm] p [mm] \equiv [/mm] p [mm] \vee [/mm] p [mm] \equiv [/mm] p $ => erfüllbar

f) $ p [mm] \rightarrow [/mm] (q [mm] \rightarrow [/mm] p) [mm] \equiv [/mm] $
$ [mm] \neg [/mm] p [mm] \vee (\neg [/mm] q [mm] \vee [/mm] p) [mm] \equiv [/mm] $
$ [mm] \neg [/mm] p [mm] \vee [/mm] (p [mm] \vee \neg [/mm] q) [mm] \equiv [/mm] $
$ [mm] (\neg [/mm] p [mm] \vee [/mm] p) [mm] \vee \neg [/mm] q [mm] \equiv [/mm] $
$ W [mm] \vee \neg [/mm] q [mm] \equiv [/mm] $
$ W $ => allgemeingültig

g)
$ p [mm] \rightarrow [/mm] (p [mm] \rightarrow [/mm] q) [mm] \equiv [/mm] $
$ [mm] \neg [/mm] p [mm] \vee (\neg [/mm] p [mm] \vee \neg [/mm] q) [mm] \equiv [/mm] $
$ [mm] (\neg [/mm] p [mm] \vee \neg [/mm] p) [mm] \vee \neg [/mm] q [mm] \equiv [/mm] $
$ [mm] \neg [/mm] p [mm] \vee \neg [/mm] q $ => efüllbar

h)
$ ((p [mm] \rightarrow [/mm] q) [mm] \wedge [/mm] p) [mm] \rightarrow [/mm] q [mm] \equiv [/mm] $
$ [mm] \neg ((\neg [/mm] p [mm] \vee [/mm] q) [mm] \wedge [/mm] p) [mm] \vee [/mm] q [mm] \equiv [/mm] $
$ [mm] (\neg(\neg [/mm] p [mm] \vee [/mm] q) [mm] \vee \neg [/mm] p) [mm] \vee [/mm] q [mm] \equiv [/mm] $
$ ((p [mm] \wedge \neg [/mm] q) [mm] \vee \neg [/mm] p) [mm] \vee [/mm] q [mm] \equiv [/mm] $
$ ((p [mm] \vee \neg [/mm] p) [mm] \wedge [/mm] (p [mm] \vee \neg [/mm] q)) [mm] \vee [/mm] q [mm] \equiv [/mm] $
$ (W [mm] \wedge [/mm] (p [mm] \vee \neg [/mm] q)) [mm] \vee [/mm] q [mm] \equiv [/mm] $
$ (p [mm] \vee \neg [/mm] q) [mm] \vee [/mm] q) [mm] \equiv [/mm] W $ => allgemeingültig


        
Bezug
Gültigkeit von Aussagen: Resolutionskalkül(Tipp)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:16 Mo 17.02.2014
Autor: pc_doctor

Hallo,
wir haben ähnliche Aufgaben zu lösen. Inbesondere sollen wr prüfen, ob sie erfüllbar/unerfüllbar sind.

Ab f) kannst du Resolution anwenden , indem du die Implikation als Disjunktion(besser: DNF)  und dann als Konjunktion aufschreibst(besser: KNF)  und dann die Resolventen bestimmst.
a -> b [mm] \equiv \neg [/mm] a [mm] \vee [/mm] b [mm] \equiv [/mm] ...(usw)

Denn eine Formel ist genau dann nicht erfüllbar , wenn [mm] \Box \in Res_{(K)} [/mm] , K ist in dem Fall ein Term. So kannst du leicht nachprüfen, ob der Term bzw. Formel erfüllbar ist oder nicht. So als Kontrolle.

Nur so als Tipp. http://de.wikipedia.org/wiki/Resolution_%28Logik%29



Bezug
                
Bezug
Gültigkeit von Aussagen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:28 Mo 17.02.2014
Autor: starki

Ah stimmt, das könnte ich machen. Das ist mir total entfallen ...

Bezug
        
Bezug
Gültigkeit von Aussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:57 Di 18.02.2014
Autor: tobit09

Hallo starki!


> Geben Sie zu den folgenden Formeln an, ob sie
> allgemeingültig, erfüllbar, falsifizierbar, unerfüllbar
> sind.

Ich verstehe die Aufgaben so, dass jede der Formeln auf jeden der vier Begriffe zu untersuchen ist.
Du hast jedoch zu jeder Aussage nur einen Begriff angegeben, obwohl stets zwei der vier Begriffe zutreffen.
Ich korrigiere daher im Folgenden nur, ob der von dir genannte Begriff zutrifft.


> a) [mm]q[/mm] => erfüllbar

[ok]

> b) [mm]q \vee p[/mm] => erfüllbar

[ok]
  

> c) [mm]p \vee \neg p[/mm] => allgemeingültig

[ok]

> d) [mm]p \rightarrow \neg p \equiv \neg p \vee \neg p \equiv \neg p[/mm]
> => erfüllbar

[ok]

> e) [mm]\neg p \rightarrow \p \equiv \neg \neg p \vee p \equiv p \vee p \equiv p[/mm]
> => erfüllbar

[ok]

> f) [mm]p \rightarrow (q \rightarrow p) \equiv[/mm]
>  [mm]\neg p \vee (\neg q \vee p) \equiv[/mm]
>  
> [mm]\neg p \vee (p \vee \neg q) \equiv[/mm]
> [mm](\neg p \vee p) \vee \neg q \equiv[/mm]
>  [mm]W \vee \neg q \equiv[/mm]
> [mm]W[/mm] => allgemeingültig

[ok]

> g)
>  [mm]p \rightarrow (p \rightarrow q) \equiv[/mm]
>  [mm]\neg p \vee (\neg p \vee \neg q) \equiv[/mm]

[notok] Da ist das hintere [mm] "$\neg$" [/mm] zu viel.

> [mm](\neg p \vee \neg p) \vee \neg q \equiv[/mm]
>  [mm]\neg p \vee \neg q[/mm]
> => efüllbar

[ok]

> h)
> [mm]((p \rightarrow q) \wedge p) \rightarrow q \equiv[/mm]
>  [mm]\neg ((\neg p \vee q) \wedge p) \vee q \equiv[/mm]
>  
> [mm](\neg(\neg p \vee q) \vee \neg p) \vee q \equiv[/mm]
>  [mm]((p \wedge \neg q) \vee \neg p) \vee q \equiv[/mm]
>  
> [mm]((p \vee \neg p) \wedge (p \vee \neg q)) \vee q \equiv[/mm]
>  [mm](W \wedge (p \vee \neg q)) \vee q \equiv[/mm]
>  
> [mm](p \vee \neg q) \vee q) \equiv W[/mm] => allgemeingültig

[ok]  


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]