www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Gruppenring halbeinfach
Gruppenring halbeinfach < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenring halbeinfach: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:51 So 24.01.2016
Autor: UniversellesObjekt

Sei $k$ ein halbeinfacher (möglicherweise nichtkommutativer) Ring und $G$ eine endliche Gruppe, deren Ordnung eine Einheit in $k$ ist. Dann ist der Gruppenring $k[G]$ wieder halbeinfach.

[Beweis: Sei $M$ ein $k[G]$-Modul. Nach der universellen Eigenschaft ist das dasselbe, wie ein $k$-Modul $M'$ mit $G$-Wirkung; hierbei ist $M'$ durch den unterliegenden $k$-Modul von $M$ gegeben. Untermoduln von $M$ entsprechen $G$-invarianten Untermoduln von $M'$. Sei [mm] $N\le [/mm] M$ ein Untermodul. Da $k$ halbeinfach ist, spaltet die Einbettung [mm] $N'\hookrightarrow [/mm] M'$, etwa durch eine $k$-lineare Projektion $p'$. Durch Durchschnittsbildung

[mm] $p=\frac{1}{\operatorname{ord}G}\sum_{g\in G}g^{-1}p'g$ [/mm]

erhält man eine $k[G]$-lineare Abbildung, welche die Einbettung von $k[G]$-Moduln [mm] $N\hookrightarrow [/mm] M$ spaltet.]

Frage: Ist meine Voraussetzung eine notwendige Bedingung dafür, dass $k[G]$ halbeinfach ist?

Liebe Grüße,
UniversellesObjekt

        
Bezug
Gruppenring halbeinfach: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mi 27.01.2016
Autor: hippias

Auf die schnelle ist dies meiner Einschätzung nach notwendig. Ich betrachte den $k$-Homo. [mm] $\phi:k[G]\to [/mm] k$, der [mm] $g\in [/mm] G$ auf $1$ abbildet, dessen Kern ein $G$-Modul ist. Ich meine, sein $G$-Komplement ist [mm] $k(\sum_{g\in G} [/mm] g)$. Da [mm] $\phi$ [/mm] surjektiv ist, folgt, dass $|G|1$ in $k$ invertierbar ist.

Um zu zeigen, dass auch $k$ halbeinfach ist, würde ich den Untermodul [mm] $J(\sum_{g\in G} g)\leq [/mm] k[G]$, wobei $J$ ein Ideal von $k$ ist, und sein Komplement betrachten.



Bezug
        
Bezug
Gruppenring halbeinfach: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 27.01.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]