www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Gruppen
Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:27 So 27.10.2013
Autor: Lernender

Aufgabe
Es sei [mm] G:=\IR\backslash\{0\}\times\IR=\{(a,x):a\ und\ x\ sind\ reell\ und\ a\not=0\}. [/mm] Auf dieser Menge sei die folgende Verknüpfung definiert:
(a,x)*(b,y):=(ab,ay+x)
Zeigen Sie, dass (G,*) eine Gruppe ist, d.h. zeigen Sie das folgende Bedingungen erfüllt sind:

i)Assoziativität: Für alle (a1,x1),(a2,x2),(a3,x3)ϵG gilt:

(a1,x1)*[(a2,x2)*(a3,x3)]=[(a1,x1)*(a2,x2)]*(a3,x3)


So wir sollen nun folgendes Beweisen. Ich denke der einfachste Weg ist, ich rechne die linke Seite aus und danach die rechte Seite und am Ende müsste rechts und links dasselbe stehen und somit würde die Assoziativität gelten. Allerdings komm ich nicht weiter.
So für die linke Seite gilt:
(a1,x1)*[(a2,x2)*(a3,x3)]=(a1,x1)*(a2a3,a2x3+x2)
=(a1a2a3,a1a2x3+x2+x1)

Und nun für die rechte Seite:
[(a1,x1)*(a2,x2)]*(a3,x3)=(a1a2,a1x2+x1)*(a3,x3)
=(a1a2a3,a1a2x3+a1x2+x1)

Ich habe es nun schon oft probiert komm aber immer wieder auf dieses Ergebnis, dass beide Seiten nicht gleich sind. Hab ich vielleicht irgendwo nur einen Denkfehler. Kann mir vielleicht jemand weiterhelfen?

Mir ist bewusst, dass es noch andere Bedingungen gibt, damit (G,*) eine Gruppe ist, jedoch geht es mir erst einmal nur um die Assoziativität.
LG Lernender

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
                        

        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 So 27.10.2013
Autor: wieschoo


> So für die linke Seite gilt:
> (a1,x1)*[(a2,x2)*(a3,x3)]=(a1,x1)*(a2a3,a2x3+x2)
> =(a1a2a3,a1a2x3+x2+x1)

eher
[mm](a_1,x_1)*[(a_2,x_2)*(a_3,x_3)]=(a_1,x_1)*(a_2a_3,a_2x_3+x_2) =(a_1a_2a_3,a_1(a_2x_3+x_2)+x_1)[/mm]

Analog zur Definition ist
[mm]a=a_1,b=a_2a_3,x=x_1,y=a_2x_3+x_2[/mm]
Klammer setzen!

>

> Und nun für die rechte Seite:
> [(a1,x1)*(a2,x2)]*(a3,x3)=(a1a2,a1x2+x1)*(a3,x3)
> =(a1a2a3,a1a2x3+a1x2+x1)

>
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]