www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Gruppe der inv. Matrizen
Gruppe der inv. Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe der inv. Matrizen: Aufgabe gegen Langeweile
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 13:14 Di 20.02.2018
Autor: fred97

Aufgabe
Im Forum ist tote Hose ! Daher etwas gegen die Langeweile:

Sei $n [mm] \in \IN, [/mm] n [mm] \ge [/mm] 2,  [mm] \quad \mathcal{U}$ [/mm] ein Untervektorraum von [mm] $\IR^{n \times n}$ [/mm] mit [mm] $\dim \mathcal{U}=n^2-1$ [/mm] und sei [mm] \mathcal{G} [/mm] die Gruppe der invertierbaren Matrizen in [mm] $\IR^{n \times n}$. [/mm]

Man zeige:

    $  [mm] \mathcal{U} \cap \mathcal{G} \ne \emptyset$. [/mm]

Wie immer: es wäre nett, wenn jemand aus dem Kreise der Moderatoren, obige Aufgabe in der üblichen Art kennzeichnen würde.

        
Bezug
Gruppe der inv. Matrizen: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 14:04 Di 20.02.2018
Autor: angela.h.b.

Dieser Beitrag dient lediglich dazu, daß die obige Aufgabe in der Liste der offenen Fragen angezeigt wird.

LG Angela

Bezug
                
Bezug
Gruppe der inv. Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:02 Di 27.02.2018
Autor: fred97

Die Frage ist beantwortet

Bezug
        
Bezug
Gruppe der inv. Matrizen: Schuss ins Blaue...
Status: (Frage) beantwortet Status 
Datum: 19:11 Di 20.02.2018
Autor: Diophant

Hallo Fred,

zunächst mal vielen Dank, dass du mal wieder so eine Knobel-Aufgabe hier vorgestellt hast.

Ich bin ja nicht so der Experte in Linearer Algebra, aber irgendwie kommt mir die Aufgabe total einfach vor. Ich schildere dir also mal meine Überlegung, vermute, dass man sie in der Luft zerreissen muss ;-) und freue mich natürlich über eine Rückmeldung. :-)

Also: seien i,j aus {1,...,n} und sei A ein Element aus [mm] \mathcal{G}, [/mm] für welches ein Element, welches in der Spalte j aber nicht in der Zeile i steht, ungleich 0 ist. Dann gilt sicherlich

[mm] det(A)\ne{0} [/mm]

(da [mm] A\in\mathcal{G}) [/mm]

Nun betrachte ich denjenigen Unterraum von [mm] \IR^{nxn} [/mm] mit [mm] dim(\mathcal{U})=n^2-1, [/mm] für den das Element  [mm] u_{ij} [/mm] bei allen Elementen dieses Unterraums 0 ist.

Jetzt betrachte ich nochmals die Matrix A. Ist [mm] a_{ij}=0 [/mm] so ist [mm] A\subset\mathcal{U} [/mm] und es ist alles gezeigt.

Ist [mm] a_{ij}\ne{0}, [/mm] so muss man nur noch zur i. Zeile in A ein geeignetes Vielfaches einer anderen Zeile (deren Element in Spalte j ungleich Null ist) addieren, so dass [mm] a^{'}_{ij}=0. [/mm] Da sich dabei die Determinante nicht ändert, gehört die so erhaltene Matrix A' ebenfalls zu [mm]\mathcal{G}[/mm] und die Behauptung ist gezeigt.

Hm, wie gesagt: das war jetzt eher ein Schuss ins Blaue, aber irgendjemand muss ja mal anfangen. :-)


Gruß, Diophant

Bezug
                
Bezug
Gruppe der inv. Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Di 20.02.2018
Autor: fred97


> Hallo Fred,
>  
> zunächst mal vielen Dank, dass du mal wieder so eine
> Knobel-Aufgabe hier vorgestellt hast.
>  
> Ich bin ja nicht so der Experte in Linearer Algebra, aber
> irgendwie kommt mir die Aufgabe total einfach vor. Ich
> schildere dir also mal meine Überlegung, vermute, dass man
> sie in der Luft zerreissen muss ;-) und freue mich
> natürlich über eine Rückmeldung. :-)
>  
> Also: seien i,j aus {1,...,n} und sei A ein Element aus
> [mm]\mathcal{G},[/mm] für welches ein Element, welches in der
> Spalte j aber nicht in der Zeile i steht, ungleich 0 ist.
> Dann gilt sicherlich
>  
> [mm]det(A)\ne{0}[/mm]
>  
> (da [mm]A\in\mathcal{G})[/mm]
>  
> Nun betrachte ich denjenigen Unterraum von [mm]\IR^{nxn}[/mm] mit
> [mm]dim(\mathcal{U})=n^2-1,[/mm] für den das Element  [mm]u_{ij}[/mm] bei
> allen Elementen dieses Unterraums 0 ist.
>  
> Jetzt betrachte ich nochmals die Matrix A. Ist [mm]a_{ij}=0[/mm] so
> ist [mm]A\subset\mathcal{U}[/mm] und es ist alles gezeigt.
>  
> Ist [mm]a_{ij}\ne{0},[/mm] so muss man nur noch zur i. Zeile in A
> ein geeignetes Vielfaches einer anderen Zeile (deren
> Element in Spalte j ungleich Null ist) addieren, so dass
> [mm]a^{'}_{ij}=0.[/mm] Da sich dabei die Determinante nicht ändert,
> gehört die so erhaltene Matrix A' ebenfalls
> zu [mm]\mathcal{G}[/mm] und die Behauptung ist gezeigt.
>  
> Hm, wie gesagt: das war jetzt eher ein Schuss ins Blaue,
> aber irgendjemand muss ja mal anfangen. :-)
>  
>
> Gruß, Diophant

Hallo Diophant,

herzlichen Dank, dass Du Dich  mit der Aufgabe beschäftigt  hast. Leider muss ich  Deine Überlegungen in der Luft zerreißen,  nix für Ungut.

Was hast  Du  gemacht? Das: Du hast Dir ein Paar von Indices i,j vorgegeben jetzt hast  Du Dir aus diesen Indices einen ganz speziellen  [mm] n^2-1 [/mm] - dimensionalen Unterraum gebastelt.
So geht's  natürlich nicht,  denn  dieser Unterraum ist doch vorgegeben!

Gruß Fred



Bezug
                        
Bezug
Gruppe der inv. Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Di 20.02.2018
Autor: Diophant

Hallo Fred,

ok. Gehe ich richtig in der Annahme, dass mein Denkfehler in der (falschen) Annahme bestand, alle Unterräume mit [mm] dim(U)=n^2-1 [/mm] hätten notwendigerweise einen festen Eintrag [mm] u_{ij}=0? [/mm]

(Ich habe nichts zitiert, da ich gerade vom Smartphone aus schreibe).

Ich knoble weiter! :-)

Gruß, Diophant

Bezug
                                
Bezug
Gruppe der inv. Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:52 Di 20.02.2018
Autor: fred97


> Hallo Fred,
>  
> ok. Gehe ich richtig in der Annahme, dass mein Denkfehler
> in der (falschen) Annahme bestand, alle Unterräume mit
> [mm]dim(U)=n^2-1[/mm] hätten notwendigerweise einen festen Eintrag
> [mm]u_{ij}=0?[/mm]


Ja, das ist Dein Fehler

Grüße  Fred

>  
> (Ich habe nichts zitiert, da ich gerade vom Smartphone aus
> schreibe).
>  
> Ich knoble weiter! :-)
>  
> Gruß, Diophant


Bezug
        
Bezug
Gruppe der inv. Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:29 Di 20.02.2018
Autor: donquijote

Hallo,
für gerades n gibt es ein relativ einfaches Argument.
Die Menge [mm]\mathcal{G}^+=\{A\in\IR^{n \times n}:\det A>0\}[/mm] ist wegzusammenhängend mit [mm]\pm E\in\mathcal{G}^+[/mm], wobei E für die Einheitsmatrix steht. Somit gibt es einen Weg in [mm]\mathcal{G}^+[/mm], der E und -E verbindet. Da [mm]\mathcal{U}[/mm] eine Hyperebene durch 0 ist und E und -E auf verschiedenen Seiten liegen, muss dieser Weg [mm]\mathcal{U}[/mm] schneiden.
Leider habe ich noch keine Idee, ob und wenn ja wie sich dieser Ansatz für den Fall n ungerade modifizieren lässt.




Bezug
                
Bezug
Gruppe der inv. Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:12 Mi 21.02.2018
Autor: fred97


> Hallo,
>  für gerades n gibt es ein relativ einfaches Argument.
>  Die Menge [mm]\mathcal{G}^+=\{A\in\IR^{n \times n}:\det A>0\}[/mm]
> ist wegzusammenhängend mit [mm]\pm E\in\mathcal{G}^+[/mm], wobei E
> für die Einheitsmatrix steht. Somit gibt es einen Weg in
> [mm]\mathcal{G}^+[/mm], der E und -E verbindet. Da [mm]\mathcal{U}[/mm] eine
> Hyperebene durch 0 ist und E und -E auf verschiedenen
> Seiten liegen, muss dieser Weg [mm]\mathcal{U}[/mm] schneiden.
>  Leider habe ich noch keine Idee, ob und wenn ja wie sich
> dieser Ansatz für den Fall n ungerade modifizieren
> lässt.

Hallo donquijote,

das ist eine schöne Lösung, jedenfalls für gerades n.

Gruß FRED

>  
>
>  


Bezug
        
Bezug
Gruppe der inv. Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:17 Mi 21.02.2018
Autor: fred97

Ich denke einige Hinweise sind angebracht:

1. Wir nehmen an, dass

    $ [mm] \mathcal{U} \cap \mathcal{G}=\emptyset [/mm] $.

2. $ [mm] \mathcal{U}$ [/mm] ist eine Hyperebene, somit ex. eine Linearform $f: [mm] \IR^{n \times n} \to \IR$ [/mm] mit

    $ [mm] \mathcal{U} [/mm] =ker(f) $.

3. Ist [mm] I_n [/mm] die Einheitsmatrix in [mm] \IR^{n \times n}, [/mm] so gilt wegen 1. und 2.:
[mm] $f(I_n) \ne [/mm] 0$.

Wir können also [mm] $f(I_n)=1$ [/mm] annehmen.

4. Nun sei $A [mm] \in \IR^{n \times n}$ [/mm] nilpotent. Man zeige: $f(A)=0$, also $ A [mm] \in \mathcal{U}$. [/mm]

5. Im letzten Schritt konstruiere man zwei nilpotente Matrizen, deren Summe invertierbar ist (das geht !).

Diese Summe gehört dann zu $ [mm] \mathcal{U} \cap \mathcal{G}=\emptyset [/mm] $, ein Widerspruch !


Bezug
        
Bezug
Gruppe der inv. Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 Mi 21.02.2018
Autor: donquijote

Hallo nochmal,
ich habe keine Idee, wie man deinen Punkt 4 zeigen kann, dafür aber noch einen anderen Lösungsansatz.
Eine Linearform hat die Form [mm]f(A)=\sum_{i,j=1}^nc_{ij}a_{ij}[/mm].
Ist entweder [mm]c_{ii}=0[/mm] für alle i oder [mm]c_{ii}\ne 0[/mm] für mindestens 2 verschiedene i, so gibt es eine Diagonalmatrix A mit [mm]a_{ii}\ne 0[/mm] für alle i und [mm]f(A)=\sum_{i=1}^nc_{ii}a_{ii}=0[/mm].
Ist [mm]a_{ii}\ne 0[/mm] für genau ein i und gibt es [mm]i\ne j[/mm] mit [mm]c_{ij}\ne 0[/mm], so kann eine invertierbare Matrix A konstruiert werden mit Einsen auf der Diagonale, einem Koeffizienten [mm]a_{ij}\ne 0[/mm] außerhalb der Diagonale und allen übrigen Koeffizienten gleich 0, so dass f(A)=0.
Der verbleibende Fall ist [mm]c_{ii}\ne 0[/mm] für genau ein i und alle übrigen [mm]c_{ij}=0[/mm]. In diesem Fall enthält [mm]\mathcal{U}[/mm] alle Matrizen mit [mm]a_{ii}=0[/mm] für dieses i und alle anderen Koeffiziennten beliebig, unten denen sich auch invertierbare Matrizen befinden.


Bezug
                
Bezug
Gruppe der inv. Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:34 Do 22.02.2018
Autor: fred97


> Hallo nochmal,
>  ich habe keine Idee, wie man deinen Punkt 4 zeigen kann,
> dafür aber noch einen anderen Lösungsansatz.
>  Eine Linearform hat die Form
> [mm]f(A)=\sum_{i,j=1}^nc_{ij}a_{ij}[/mm].
>  Ist entweder [mm]c_{ii}=0[/mm] für alle i oder [mm]c_{ii}\ne 0[/mm] für
> mindestens 2 verschiedene i, so gibt es eine Diagonalmatrix
> A mit [mm]a_{ii}\ne 0[/mm] für alle i und
> [mm]f(A)=\sum_{i=1}^nc_{ii}a_{ii}=0[/mm].
>  Ist [mm]a_{ii}\ne 0[/mm] für genau ein i und gibt es [mm]i\ne j[/mm] mit
> [mm]c_{ij}\ne 0[/mm], so kann eine invertierbare Matrix A
> konstruiert werden mit Einsen auf der Diagonale, einem
> Koeffizienten [mm]a_{ij}\ne 0[/mm] außerhalb der Diagonale und
> allen übrigen Koeffizienten gleich 0, so dass f(A)=0.
>  Der verbleibende Fall ist [mm]c_{ii}\ne 0[/mm] für genau ein i und
> alle übrigen [mm]c_{ij}=0[/mm]. In diesem Fall enthält [mm]\mathcal{U}[/mm]
> alle Matrizen mit [mm]a_{ii}=0[/mm] für dieses i und alle anderen
> Koeffiziennten beliebig, unten denen sich auch
> invertierbare Matrizen befinden.

Hallo donquijote,

ja, das sieht gut aus !

Zu meinem Punkt 4:

sei $A [mm] \in \IR^{n \times n} [/mm] $ nilpotent.

Wir setzen [mm] $B:=A-f(A)I_n$. [/mm] Dann ist $f(B)=0$, also $B [mm] \in \mathcal{U} [/mm] $  und somit ist $B [mm] \notin \mathcal{G} [/mm] $.

Das bedeutet: $f(A)$ ist ein Eigenwert von $A$. Da $A$ nilpotent ist, haben wir $f(A)=0$ und somit  $A [mm] \in \mathcal{U} [/mm] $ .




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]